Tbecturadian elinugg zedicio
 OITI.AW.A.

PUHEISHED MONTHLY.
ANNUAL SUBSCRIPTION
. . $\$_{\text {s. }}$
ADVERTISING RATES • - ise per line (22 line to a inch).

- 'UNION "CHAMMBERSS, I I Metcalfe St.

The Canadian Mining Revien, is devoted to the opening tup of the mineral arealth of the Dominion, and its publishers wuill be thankj ill for any encouragement they may rective at the hands of those zuho are interested in its speedy development.

Visitors from the mining districts, as avell as others interested in Canadian Mineral Lands, are cordially invited to call at our office.

Mining newes and reports of nezu discoveries of mineral deposits are solicited.

All matter for pullitation in the Review should be recticicd at the affice not later than the 77th of the month.

Address all correspondence, ©ंe., to the Pullishers of the Canaman Mining Review, Ottaaua.

Advertising Space.

The circulation of the Casabias Mivise Revirw, which has steadily been going up since its first publication, more than heve yeurs ago, has now more than doubled the estimate upon which we had reckoned, and its value as an advertising mediam to business nuen who wish to reach the best classes of mine owners and operators, and the mining centres and camps of every province in the Dominion, is consequently very greatly enhanced. The Review is in the widest sense a Canadian journal belonging to all provinens alike; it is the only journal published in Canada wholly devoted to the interests of her mining industries and mineral resources. We would simply draw the atten tion of those who have hitherto overlooked it, to this matter, promising our best attention and most reasonable terms on any application for advertising space.

Iron and Phosphates.

At the recent moeting of the Royal Society of Canadm we had the $y^{\text {leasure }}$ of listening to the address delivered to the mathematical, physical and chemical section by its President (Mir. Thomas Macfarlane). Some of the points touched upon seem to us to be of considerab'e practical interest.
After referring to the death of Dr. Baynes, a. momber of the section, rud :nnouncing as his subjizet the utilisation ci: waste in Chemical Technology, Mr. Macfarlane gave a description of the progress which had been made in this respect at the lead furnaces of Freiber, in Saxony, and at the iron furnaces of Gartsherrie, in Scotland. At the latter place it seems that the furnace gases are made use of on a stupendous scale for the production of sulphate of ammonia; and for other purposes. In another department' of the metallurgy of iron waste;
utilisations of a most important character have been accomplished, and to these Mr. Macfarlane referred in the following terms:
" Fifty six years have elapsed since Karsten plainly pointed out the influence which certain small percentages of phosphiortis exorcise upon the quality of malleable iron. The presence of 0.3 up to 0.8 per cent. has the effect of making it "cold short," that is of lessening its strength at ordinary temperatures. This element is often present in iron ores in the shape of small quantities of apatite and other minerals, and when this is the case, as in 1840 , the smelter has no means at his conumaud for proventing the reduction of the phosphorus and its pussage into his pig iron. In the original Bessomer process it was found utterly impossible to remove the phosphorus. All of that element present in the pig-iron stuck to the metal, while boiling whito hot in the converter, passed into the steel ingots without the slightest diminution, and into the rails, axles and trees, into which they were manufactured. It was found that for our modern purposes a much greator freedom from the weakening element was demanded than in Karsten's time. For rails 0.1 to 0.2 per cent. phosphorus was permitted, but for steel of a higher quality the pressure of one tenth of these quantities became the limit. As the demand for steel to replace iron increased, so also did the efforts of iron masters to apply cheap and inferior (becauso phosphoric) pigirons in the production of Bessemer steel. The ores free from phosphorus were scarce, and, if we except the Cumberland hematites, had to be brought to England from Spain, Algiers and Sweden.
"At last in May, 1879, the problem was solved by Bolckow Vaughan \& Co., at Middlesborough, who were the first to carry out the invention of Thomas it Gilchrist, since become famous as the "Basic process." By making use of a basic lining of bricks in the converter, containing not more than 10 per cent. silica, manufactured from dolomite with silicate of soda as a binder, and employing a basic slag containing not more than 20 per cent. silica, and continuing the "blow" 2 or 3 minutes after the reinoval of the silicium and carbon, those inventors were able to rednce the phosphorus in common pig iron 1.5 to 0.4 per cent. and dries it as phosphoric acid into the basic cinder. The consequences were far reaching. Inferior ores and pig irons became available for making Bessemer steel, and great rednctions have taken place in the price of rails, of which our new railways have had the advantage.
"But these were not the only consequences of this invention. Chemical manufacturers began to face the question as to how the phosphoric acid thus scparated could be made use of. Large quantities of Thomas \& Gilchrist slag were accumulating at the steel works in England and elsewhere, and it was found to contain from 16 to 20 per cent. of phosphoric acid: Compured with our Canadian apatite it seems to be a meagre raw material for fertilizers:

Novertheless it was used for making these, and an article called Thomas' Precipitate was put upon the market by German manufacturer:. But before this business had time to develop, it was found that by applying she slag itself as a manure, without any preparation beyond grinding to a very tine powder, the most satisfactory results could be obtained. The problem of utilising it has, therefore, been atcucked and solved, and the phosphorus which, for fifty years, was the dread of the iron-master, has now no terrors for him, and has reached at last a sphere of widely extended usefulness in agriculture.
"It would be rather an undesirable result if this saving of waste should have the effect of reducing the value of our apatite deposits. Yet the most recent investigations point in this direction. In the Chemiker Zeituny, of March last, the following ultimate amalysis of the Thomas slag is given :-

$$
\begin{align*}
& \text { Phosphoric asid.............. } 19.02 \\
& \text { Silica........................ } 8.20 \\
& \text { Manganous oxide........... } 5.24 \\
& \text { Furrous oxide. } \\
& \text { Fervic oxide. } \\
& 5.06 \\
& \text {.14 } \\
& \text {......... } 49 . \hat{10} \\
& \text { Sulphar. } \\
& \text { Maynesia. } \\
& \text { Alumina. }
\end{align*}
$$

" Suail_crystals having been discovered in the slag possessing the composition of Quadrotasic phosphate of lime, the proximato composition of the slag has been computed from the above analysis with the following result:-

This view of its composition is supported by the fact that the slag is decomposed with facility by dilute acids, and further S.7-8 per cent. of its phosphoric acid is soluble in a solution of Citrate of Ammonia, a circumstance that would indicate its agricultural value to be equal to that of the precipitated or reverted phosphoric acid of artificial fertilizers. This is just what field experiments with it, in an extremely fine condition, have proved. Its agricultural value has been found io be cqual to the phosphoric acid contained in Thomas Precipitate or bone ash.
" With reference to price it is calculated"that one pound of phosphoric acid, contained in the finely ground basic slag, and be delivered for about one penny. If we take the ralue of 80 per cent. apatite in Liverpool at 10 c per unit., or about $\frac{1}{3}$ per lb . of tribasic phosphate, then the price of the phosphoric acid in it amounts' to very nearly 1 d . per lb . This is the same price, but a great difference lies in the fuct that

