By absorbing the Orygen with Pyrogallate of Potash.

Exp. 1.-Take a glass tule, about 1 metre long and 15 mm . in diameter, and divide it into six equal parts by means of small india-rubber bands. Pour through a small glass tube a strong solution of pyrogallic acid till the first division is about one-third full. Wash the tube, pluce it so that it uny pass through the pyrogallis acid, and again pour thrsugh it a strong solution of caustic potash till on withdrawing it the liquid may stand a little above the first ring. Place a small piece of - india-rubber on the mouth of the tube, shake it well, and invert in a tumbier of water. On withdrawing the thumb, the water rises in the tube, and on adjusting the water to the same level within and without the tulie, the water should stand a little alove the second ing, showing that about one-fifth of the air has been absorbed. This one-fifth is oxygen, which has been absorked hy the ps cegallate of notash.

By the Eudiometer.

Exp. 2.-To 100 \%clumes of air ir the Eudiemeter add 50 volumes of hydrogen and explode. The 150 volumes will shrink (steam being condensed) to 87 volumes; therefore,

$$
150-87=63 \text { rols. loss. }
$$

Of these 63 vols. one-third is oxygen; there are, thersior, 21 volumes of oxygen in 100 volumes of air.

By drawing a measured volume of Air over red.. hot Copper, and then weighing the Copper Oxide produced.

Exp 3.-Take the hydrogen bottle, press the funnel-tube nearly to the bottom of the flask; and adda little water to cover the end of it. Attach an d:ying.tube, filled with calcium chlorite, and connect this with a tube of hard glass filled with bright copper turnings. Bring the copper turnings to a red hent, and then pour water through the funnel-tube to expel the air and cause it to pass over the red-hot copper, which combines with the oxygen to form copper oxide. The nitrogen may be collected in the usual manner.
This experiment illustrates the principle of the method ndopted by Dumas and Boussingault in their precise determination of the composition of air by weight. They passed a given volume of air (1) over calcium chlorite, then (${ }^{2}$) over caustic $2^{m i t a s h}$, and finally (3) over ionnited copper reduced from its oxide, severally contained in glass tubes accurately weighed hefore the exporiment was commenced. The increase in the weight of the calcium chloride indicated the moisture, of the caustic potasin tube, the carbon dioxide, and of the copper tube the oxygen, severally contained in the volume of air operated upon. The residual gas, which is nitrogen, was collected in an exhausted and weighed globe, the increase in the weight of which gave the nitrogen. The mean of a large number of experiments of this kind, in which every possible precaution against error was taken, gave the following results, with which we give the results of the volumetric analynis:-

		rax cext.		ix notso xumbil:
	(Nitrogen	76.095		77
, 3y weight	Oxygen	23005		23
By volume	\{ Nitruger	74.04		79
By volume	Oxyren	2080	.	21

Constancy of Composition.

Atmospheric air is nearly constant in composition. The results of numerous nnalyses at various points of the earth's sur-' face and at considerabie heights abrvo the level of the sea, show but little variativn. Angus Smith has found that the percentage of oxygen in air from the sea-shore and from Scottish moors and mountains, is as high as 20.999 per cent., and in the free air of towns, and especially during foggy weather, it may sink as low as 20.82 . This constancy of composition led some of the early chemists to consider air as a chomical compound of one volume of oxygen and four volumes of nitrogen. That this is not the case appears from the following facts:-
(1) If pure air were a definite compound of oxygen and ritrogen it should le absolutely constunt in composition. But it is not quite constant, aud, therefore, this fact alone is sufficient prooi that the gases are not combined, lut only mixed together, as the, constituents of a compound always occur in invariable proportions (Art. 17).
(2) Tinis conclusion is contirmed in many ways. Thus, on mi ing oxygen and nitrogen in the proportion in which they are found in the atmosphere, none of the phenomena, such as evolution of heat, and alteration in properties and volume, vsually artendant on chemical combination, are perceived; nevertheless, the misture is actually identical in composition with atmospheric air and ${ }^{\prime}$ possesses all its properties.
(3) Were air a compound it should dissolve:in water as such, that is, the proportion of oxygen and nitrogen in dissolved air should be the same as in undissolved ai. ; but if a mixture, the more soluble constituents should dissolve the more readily, and, therefore, more oxygen than nitrogen should dissolve, sinceoxygen is more soluble than nitrogen. Experiment shows that the latter is the case. If water which has been recently boiled, and then allowed to cool out of contact with air, be shaken with air and the dissolved air be then expelled by boil. ing, and collected, it will contain 32 instead of 21 par cent. by volume of oxygen.
(4) The oxygen and nitrogen in the air do not present a simple ratio to the atomic weights of these elements.
(To be continued.)

HIGH SCHOOL LTEERATURE.

By J. E. Wetherbli, M.A.

KISTH PAPER,

"THE ANOIENT MARINER."-PART III.

1. What effect is producod by the complex epizeuxis of the fint stanzai How can the intended effect to brought out orally?
2. What is the force of the article in "a momething" (r. G), and

3. Eye-eye--Sky-Why does the poest frequently make a word. rhyme with iteelf? (See down-Siun-Sun-below).
4. Point out in this part any worda, expressions, manneriama, or metrical devices that anack of the ancient balled atyle.
5. "It moved and moved"m"It neared and neared." Why in the varib rapeated?
