Canadian Kaidwat and Marine Worl

Canadian Railway and Marine World

May, 1919

The Economics of Electric Operation of Railways.

By W. G. Gordon, Transportation Engineer, Canadian General Electric Co.

Table 2. Cost of Maintenance of Electric Locomo-

Much has been written descriptive of the different railways now operating electrically, wholly or in part, and of the results as compared with steam operation. I will present some of the latest figures regarding the economies effected by electric operation. At the American Institute of Electrical Engineers conven-tion last year, E. W. Rice said:—"Electric locomotives have been so improved and simplified that they are competent to haul the heaviest train that can be held to-gether with the present train construction; to operate at the highest speed permissible by the alignment of the road and independent of its grades; and the electric locomotives can meet, in the most efficient and adequate manner, the trans-portation problems confronting the country, and offer better results than are now obtained or seem possible with steam locomotives. It should not be forgotten that steam locomotives burn about 25% of the entire coal mined in the United States, and that 12% of the entire ton mileage movement of freight and passengers carried, is represented in cars and tenders required to haul coal to supply steam for the locomotives." This percentage is shown from the following table (1) of one year's ton mile movement:

	innes par deter	Per cent.			
bric openation there	Millions ton miles	of total			
Revenue coal	204,600	12.56			
Leon vewliby	52 000	4.96			
evenue troight	272 040	35.60			
- allway trought	5 600	0.55			
Sucomotives	148 200	14.20			
Sucomotivo tondovo	74 620	7.14			
- assenger cars	186,890	17.90			
	1,043,960	100.00			

The comparative percentages for the different classifications are very close to those given above for the operation of our steam railways in Canada. Where a trunk line is electrically operated from water power stations it means

Where a trunk line is electrically operated from water power stations, it means that the total movement for railway coal and locomotive tenders is eliminated, and even if partially or wholly operated from steam power stations, the movement for locomotive tenders is eliminated, and the movement for railway coal greatly decreased. The benefit is self evident, of being able to apply this ton mileage, at present absorbed by steam operation, in the movement of revenue tonnage.

The cost of maintenance of the electric locomotive is very much less than that of the steam locomotive. Table 2 gives the cost of maintenance in cents per locomotive mile for a number of roads, these costs being for the years they have been operating electrically to 1917, inclusive. The costs are given for an average of 5 for 2 roads and an average of 4 years for 2 roads and an average of 2 years for The average locomotive weight in tons is given for each road, and in order to obtain a comparison, I have given the cost also on the basis of the locomotives weighing 100 tons in each case.

	10.0	tives.		
Road.	Average loco. wt. in tons.	Average maint. per loco. mile.	Average maint. on basis of loco, weighing 100 tons.	No. of years.
Baltimore &	op has		10 H	
Ohio Rd.	98	5.13	5.24	5
Butte, Anaconda				
& Pacific Ry.		5.66	7.08	4
Chicago, Milwau kee & St. Pau Ry.		. 8.94	8.09	2
Michigan	290	. 0.04	5.09	4
Central Rd.	108	4.39	4.06	4
New York Cen- tral Rd.	118	4.12	3.5	5
Pennsylvania Rd.	156	5.3	3.4	5
Conorol ave	2000	5 50	1 20	A CONT

The cost of maintenance per locomotive mile for steam locomotives, compared with the above, will be from 10c to 20c or higher, depending on the capacity and service of the locomotive.

A very interesting comparison is given in Table 3, showing comparative results between steam and electric operation on the Butte, Anaconda & Pacific Rd. In 1913 the operation was entirely steam; since then it has been gradually superseded by electric. The figures for electric operation are averaged for 3 years, and as there was still a considerable amount of steam operation during these 3 years, the figures do not show full credit to the benefit of electric operation.

Table 3. Comparative Results, Steam and Electric Operation, B. A. & P. Rd.

Operation, B. A. & P. Rd.					
	1913 a			Elec. opera-	
	94,830 97,492	175,165 57,881	119,665 39,611	40.59 40.61	
Loco. house	99,611 28.342	74,036 16,703	25,575 11,639	25.67 41.06	
Lubricants Water	9,345 4,491	5,444 2,084	3,901 2,407	41.76 53.59	
	5,435 39,546 \$	4,308	1,127	20.74 37.80	
Revenue ton miles hauled 153,	168,648 1	69,553,405	16,384,757	10.70	

Table 3 shows a saving in electric operation of 37.8%, and at the same time an increase in the revenue ton miles hauled of 10.7%. Had this increased ton miles been hauled in 1913, the total cost would have been \$597,277, so that the actual saving in electric operation is 44%. On this road 17 electric locomotives were in operation in 1914, 24 in 1916, and at present there are 28. Where mountain divisions are electric

Where mountain divisions are electrically operated, a further marked economy is effected by regenerative braking. This is obtained by exciting the fields of the motors on the locomotive on down grades, so that the counter electro-motive force builds up higher than the line voltage, and returns power to the line, this action retarding the train to whatever extent desired, without the use of the air brakes, as well as supplying power to other trains running on the level, or up grades. This action, of course, reduces the total demand on the substations, with consequent reduction in the power demand on the primary source of supply.

action, of course, reduces the total demand on the substations, with consequent reduction in the power demand on the primary source of supply. Table 4 which shows the saving thus obtained on the Chicago, Milwaukee & St. Paul Ry. is the result of careful tests just worked up by General Electric Co.'s engineers.

The above results are of extreme interest. The runs were taken in both directions, over the total electrified distance of 437.6 miles, with trains as high as 2,853 tons trailing load, giving a general average in watt hours per ton mile, without regenerative braking, of 24.06; and with regenerative braking of 19.72; or a reduction in power due to regenerative braking of 18.04%. As a direct result of regenerative braking, a large saving is effected in brake shoe wear, apart from the elimination of wrecks caused by overheating of the brake shoes, brake heads and wheels, where heavy trains are handled on long down grades. The air brakes are only required for emergency, as the braking is all done by the locomotive. It has been estimated that on the Chicago, Milwaukee & St. Paul Ry. the saving per

Table 4. Chicago,	Milwankaa	& St Da	ul Du Testa	IN			i jailoig
Proliminary andoulation m	Milwaukee	a St. Fa	ul Ry. lests.	watt Hou	rs Per T	on Mile.	a subst
Preliminary calculation m ation includes ton mileage of	road and	helper lo	meter reading	taken on	locomo	tives. Thi	s calcu
	No. of	Trailing	ø omotives.	With Rog	Brok 1	Without Re	Puol
no. has has been been	cars		Ton miles trip	Kw. hrs.	W hr	Kw. hrs.	W. h
Missoula Division-211.2 miles		North Parties	includ'g locos.	for trip	ton mi.	for trip	ton m
3 Avery to Deer Lodge	57-56	2497-2457	596485	15068	25.23	16432	27.5
7 Avery to Deer Lodge		2767	656516	17207	26.20	18374	27.9
10 Avery to Deer Lodge	61-60	2836-2796	665505	17971	27.00	19622	29.4
6 Deer Lodge to Avery	62	2383	575436	6943	12.05	8927	15.0
9 Deer Lodge to Avery	82	2853	674700	9344	13.85	11618	17.2
		Averag	e Values.				
Avery to Deer Lodge		and the state	· ratues.		26.14		28.3
Deer Lodge to Avery					12.95		16.3
Round trip average Misso		on			19.54		22.3
Rocky Mountain Division-22							D() DO
4 Deer Lodge to Harlowton	58-56	2539-2466	637367	10392	16.30	15141	23.7
1 Deer Lodge to Harlowton	60	2817	712518	12155	17.06	17405	24.4
5 Harlowton to Deer Lodge	67	2264	588640	14654	24.90	16792	28.0
2 Harlowton to Deer Lodge	64	2762	700021	14929	21.32	18498	26.4
		Averag	e Values.				
Deer Lodge to Harlowton		207070			16.68		24.0
Harlowton to Deer Lodge	MACH BUCK				23.11		27.4
Round trip average Rock;	y Mt. Div.				19.89		25.7
General average				18.040	19.72		24.0