Canadian Railway and Marine World

May, 1919

The Economics of Electric Operation of Railways.

By W. G. Gordon, Transportation Engineer, Canadian General Electric Co.

Much has been written descriptive of the different railways now operating electrically, wholly or in part, and of the results as compared with steam operation. I will present some of the latest figures regarding the economies effected by electric operation. At the American Institute of Electrical Engineers convention last year, E. W. Rice said:-"Electric locomotives have been so improved and simplified that they are competent to haul the heaviest train that can be held together with the present train construction; to operate at the highest speed permissible by the alignment of the road and independent of its grades; and the electric locomotives can meet, in the most efficient and adequate manner, the transportation problems confronting the country, and offer better results than are now obtained or seem possible with steam locomotives. It should not be forgotten that steam locomotives burn about 25% of the entire coal mined in the United States, and that 12% of the entire ton mileage movement of freight and passengers carried, is represented in cars and tenders required to haul coal to supply steam for the locomotives." This percentage is shown from the following table (1) of one year's ton mile movement:

| | Millions ton miles | | |
| :--- | ---: | ---: | ---: | Per cent. | of total |
| ---: | :--- | ---: |

The comparative percentages for the different classifications are very close to those given above for the operation of our steam railways in Canada.
Where a trunk line is electrically operated from water power stations, it means that the total movement for railway coal and locomotive tenders is eliminated, and even if partially or wholly operated from steam power stations, the movement for locomotive tenders is eliminated, and the movement for railway coal greatly decreased. The benefit is self evident, of being able to apply this ton mileage, at present absorbed by steam operation, in movement of revenue tonnage.
The cost of maintenance of the electric of thotive is very much less than that the the steam locomotive. Table 2 gives he cost of maintenance in cents per lococosts mile for a number of roads, these operating for the years they have been The oting electrically to 1917, inclusive. years costs are given for an average of 5 for 2 for 3 roads, and average of 4 years the 2 roads and an average of 2 years for The Chicago, Milwaukee \& St. Paul Ry. is given age locomotive weight in tons obtain for each road, and in order to cost als comparison, I have given the Weighing on the basis of the locomotives Weighing 100 tons in each case.
Table 2. Cost of
Maintenance of
tives.

The cost of maintenance per locomotive mile for steam locomotives, compared with the above, will be from 10c to 20 c or higher, depending on the capacity and service of the locomotive.
A very interesting comparison is given in Table 3 , showing comparative results between steam and electric operation on the Butte, Anaconda \& Pacific Rd. In 1913 the operation was entirely steam; since then it has been gradually superseded by electric. The figures for electric operation are averaged for 3 years, and as there was still a considerable amount of steam operation during these 3 years, the figures do not show full credit to the benefit of electric operation.
Table 3. Comparative Results, Steam and Electric Operation, B. A. \& P. Rd.

	Steam 1913	Electric average for 3 yrs .	Saving in amount	Elec. Operation \%
Fuel \& power	\$294,830	175,165	119,665	40.59
Loco. repairs	97,492	57,881	39,611	40.61
Loco. men, wages	99,611	74,036	25,575	25.67
Loco, house	28,342	16,703	11.639	
Lubricants	9,345	5,444	3,901	41.76
Water	4,491	2,084	2,407	53.59
Other supplies	5,435	4,308	1,127	20.74
Total,	\$539,546	\$335,621	\$203,925	37.80

Table 3 shows a saving in electric operation of 37.8%, and at the same time an increase in the revenue ton miles hauled of 10.7%. Had this increased ton miles been hauled in 1913, the total cost would have been $\$ 597,277$, so that the actual saving in electric operation is 44%. On this road 17 electric locomotives were in operation in 1914, 24 in 1916, and at present there are 28.

Where mountain divisions are electrically operated, a further marked economy is effected by regenerative braking. This is obtained by exciting the fields of the motors on the locomotive on down grades, so that the counter electro-motive force builds up higher than the line voltage, and returns power to the line, this action retarding the train to whatever extent desired, without the use of the air brakes, as well as supplying power to other trains running on the level, or up grades. This action, of course, reduces the total demand on the substations, with consequent reduction in the power demand on the primary source of supply.
Table 4 which shows the saving thus obtained on the Chicago, Milwaukee \& St. Paul Ry. is the result of careful tests just worked up by General Electric Co.'s engineers.
The above results are of extreme interest. The runs were taken in both directions, over the total electrified distance of 437.6 miles, with trains as high as 2,853 tons trailing load, giving a general average in watt hours per ton mile, without regenerative braking, of 24.06; and with regenerative braking of 19.72 ; or a reduction in power due to regenerative braking of 18.04%. As a direct result of regenerative braking, a large saving is effected in brake shoe wear, apart from the elimination of wrecks caused by overheating of the brake shoes, brake heads and wheels, where heavy trains are handled on long down grades. The air brakes are only required for emergency, as the braking is all done by the locomotive. It has been estimated that on the Chicago, Milwaukee \& St. Paul Ry. the saving per

Table 4. Chicago, Milwaukee \& St. Paul Ry. Tests. Watt Hours Per Ton Mile.

