It night reasonably be expected that all who aspire to become the instructors of the rising generation should be able, if not in six, Jet certainly in twelve months, so to master the subjects in the pro-gram-ne as to secure for them at least 50 per cent. of the marks required at ; hese examinations.

Such, however, it is shown by the records of the Board, is not the case. Of che forty-eight candidates at the late meeting, 24 had preOf Of the reriaining twenty-two, eight had twice before failed; two, three times; and one, on that occasion, suffered a fifth defeat.
th Th_{3} following instances will show that some of the candidates, though threatened with the mortification of successive defeats, are $W_{\text {nabl }}^{\theta}$ du'ing 6,12 or even 24 months, to make any solid advancement in those very subjects in which their deficiencies had before bive demonstrated. One candidate who competed in four succesthe Examinations obtained the following marks in arithmetic, at those seve:al Examinations respectively; the highest number posdible being 200 ; viz. : $28,75,45$ and 52 .
The same; spelling, 50 being the maximum, $40,10,30$ and 15 respentively
$b_{0 i n g}$ Another in the three successive Examinations in Geography, 150
eing the maximum ; 65, 78 and 49 respectively.
of Qurely the public will suffer no loss by the elimination of this sort of material from the teaching class.
"From such apostles," exclaimed the indignant Cowper, after ${ }^{\text {doscribing an unworthy class of clergymen : }}$
"From such apostles, 0 ye mitred hands, preserve the flock, and mill not careless hands on empty skulls, which cannot teach and will not learn."-Woodstock Times.

Toronto, 15 .l September, 1873.
To the Editor of the Journal of Education:
tion 8 IR,-I send herewith for publication in the Jourral of Educaton some notes which I think may be of interest to teachers.

Yours very truly,
George Paxton Young.
${ }^{\text {milutions of the questions in algebra and natural philo- }}$ Rophy proposed at the recent examination of teaceers P_{or} first-class certificates.

2. ALGEBRA.

1. Book-work.
2. Book-work.
3. Assume $x+y+z=t(m+u+r) \ldots \ldots \ldots \ldots$. . (1) $\therefore x+2 y+3 z=t(m+2 n+3 r) \ldots \ldots \ldots(2)$
$\& x+3 y+4 z=t(m+3 n+4 r) \ldots \ldots .(3)$. Subtract (1) from (2). Then $y+2 z=t(n+2 r)$. Subtract (2) from (3). Then $y+z=t(n+r)$.

$$
\therefore z=t r, \text { and }-=t
$$

In like manner, $t=\frac{y}{n}=\frac{x}{m}$.
4. We have given the three equations,
$\quad x z=y^{2}, z=\frac{1}{y+4}, y+\frac{1}{4}$
Tho solution of these presents no difficulty.
Then Let r and s be the roots of the first of the given equations.

$$
\begin{aligned}
r+s & =-(m+1) \\
r s & =-3
\end{aligned}
$$

In like $\quad \therefore A=r^{2}+s_{2}=m 2+2 m+7$.
anner $b=m^{2}+4 m+7$,
and $C \quad=m^{2}+6 m+11$.
$\therefore\left(n_{2}+2 m+7\right)\left(m^{2}+6 m+11\right)=\left(m^{2}+4 m+7\right)^{2}$.
or, $8 m+28=0 \quad \therefore m=-\frac{7}{2}$.
6. Because $(x+y \sqrt{ }-1)^{5}=a+b \sqrt{ }-1$, therefore also $(x-y \sqrt{ }-1)^{5}=a-b \sqrt{ }-1$.
Multiply these together. Then $\left(x_{2}+y^{2}\right)^{5}=a^{2}+b 2$.
But $x+y_{2}=1 \quad \therefore \quad a_{2}+b^{2}=1$.
7. Let r be the common ratio. Then the series is,

$$
\frac{2}{r^{2}}, \frac{2}{r}, 2,2 r, \& c .
$$

$$
\therefore 7 \text { th term }=2 r^{4}=\frac{1}{8} .
$$

The two real values of r are $\frac{1}{2}$ and $-\frac{1}{2}$; and the series are,

$$
\begin{array}{rrrrr}
8, & 4, & 2, & 1, & \& c . \\
8, & -4, & 2, & -1, & \& c .
\end{array}
$$

The remainder of the question is simple.
8. Because $m+n \sqrt{ }-1$ is a root of the equation $x^{3}+q x+$ $r=0, m-n \sqrt{ }-1$ is also a root of that equation. Therefore, $x^{8}+q x+r$ is divisible by $x^{2}-2 m x+m^{2}+n^{2}$ without remainder. Let the quotient be $x-8$. Then the expressions,

$$
\begin{aligned}
& x^{3}+q x+r \\
& \left(x^{2}-2 m x+m^{2}+n^{2}\right)(x-s),
\end{aligned}
$$

are identical. Therefore,

$$
2 m+s=o, m^{2}+n^{2}+2 m s=q,-s\left(m^{2}+n^{2}\right)=r
$$

Eliminate s and n; then

$$
8 m^{3}+2 m q-r=0
$$

9. It is easily seen that $a_{1} a r-a b_{1}=a r^{2}$,

$$
a_{2} b_{1} r-a_{1} b_{2}=a r 3
$$

and so on. Therefore, \&c.
10. [This question was not solved by any of the candidates at the recent examination. It requires reasoning of a more delicate kind than any of the other questions; and, none of the others presenting any special difficulty, I gave it as a test question, in view of the competition for the McCabe medal. I leave it as an exercise for students. I may add, that, taking into consideration the difficulty of this 10 th question, I reckoned $9 \frac{1}{2}$ questions a full paper at the recent examination.-G. P. Y.]

3. NATURAL PHILOSOPHY.

1. Mr. Cochrane's Solution. - Suppose the cube to be 1 cub. ft . Pressure on interior surface $=\frac{8}{2} \times 1000=3000 \mathrm{oz}$.
\therefore Pressure of air on one surface $=1 \frac{11}{26} \times 3000=4320 \mathrm{oz}$.

$$
=\frac{18}{8} \mathrm{lb} . \text { on the sq. in. }
$$

But pressure of external air $=15 \mathrm{lbs}$. to sq. in.
\therefore Elastic pressure of air inside receiver $=\frac{1}{8}$.of elastic pressure of external air. [A considerable number of the candidates offered no solution of this very simple question; and a considerable number of others gave a partially erroneous solution.-G. P. Y.]
2. Mr Cochrane's solution.-Let $F^{\prime} E H, K E G$ be drawn parallel to $A D, A B$, respectively. (The point K is in $A D, H$ in $D C, G$ in $C B$, and F in BA.-G.P.Y.) Then, because $E A$ represents the first force in magnitude, its components will be represented in magnitude and direction by $E K, E F$. Similarly the components of $2 E B$ are represented in direction by $E F$ and $E G$, and in magnitude by $2 E F$ and $2 E G$. The components of $3 E C$ are represented in magnitude by $3 E G$ and $3 E H$; the components of $4 E D$ by $4 E H$ and $4 E K$. Hence the particle E is kept at rest by a force of

But the forces $5 E G$ and $5 E K$ are opposite in direction; \therefore they must equilibrate each other; $\therefore 5 E G=5 E K \therefore E G=E K$; which proves first. And the forces $3 F F$ and $7 E H$ are opposite in direction \therefore they must equilibrate each other.

$$
\therefore 3 E F=7 E H \text { or } E F ; E H=7: 3,
$$

which proves second. [Mr. Cochrane's was the only perfectly satisfactory solution of this easy question in the Resolution of Forces.-G.P.Y.]
3. Let $B D$ be the perpendicular let fall from B on $A C$. The candidates, who solved this question, reasoned in the following manner : Let P, acting in direction $B A$, or W in $B C$, be counterbalanced by Q acting in direction $B D$. Then,

$$
Q: P=B D: B A
$$

and $W: Q=B C: B D$. Therefore, \&c.

