PROBLEM XII.

To find the side x of a square x^2 , equivalent to any irregular polygon.

Divide the polygon into triangles by drawing diagonals; let these triangular parts be calculated separately, and represented respectively by P, Q, R, S.....; then

$$x = \sqrt{P + Q + R + S...}$$
 N. S.
 $= \sqrt{y^2 + y'^2 + y''^2} + y'''^2$ (See Prob. XI.)
 $= \sqrt{z^2 + y'' + y'''^2}$
 $= \sqrt{z'^2 + y'''^2}$ G. S.

PROBLEM XIII.

To find the side x of a square x^2 , equivalent to a given circle.

$$x = \sqrt{\pi R^2}$$
 N. S.
= $\sqrt{3 R \times R}$ G. S.

N.B.—If a very exact graphical construction is required, the line R should be taken 3.14 times, instead of 3 times.

PROBLEM XIV.

To find the side x of a square x^2 , which is a mean proportional between any two given polygons P and R.

$$x = \sqrt[4]{P \times R}$$

transforming the two polygons P and R into equivalent squares, y^2 , z^2 then $x = \sqrt[4]{y^2}$, $\times z^2 = \sqrt[4]{y}$ N. and G. S.

PROBLEM XV.

To construct a triangle $\frac{c x}{2}$ on a given base c, equivalent to a given square a^2 .

Altitude
$$x = \frac{2 a^2}{c}$$
 N. S.
$$= \frac{2 a \times a}{c}$$
 G. S.