ting on the caps and stringers. It was no uncommon thing for the framers to be up to the pile drivers as the last pile was being driven, with the bricklayers entering the bridge at one end as the last stringer was being laid at the other. The stringers were laid in pairs, 9×15 inches under each rail in one span, and in threes 6×15 under the adjoining span, resting 12 inches on the cap piece, bolted together longitudinally With splice plates 24 inches long, $2 \frac{1}{2} \times \frac{1}{2}$ inches, and the whole drift bolted onto the cap.

The larger structures were built mostly after the rails were laid, a temporary structure having been used for the track-laying, and the permanent materials, iron and stone, being brought to the front by the railway itself. All the larger bridges are intended to be an iron superstructure, resting upon stone piers and abutments. These are not numerous on the prairie section, the most important being the one over the South Sas-
kateheran katchewan, at Medicine Hat, which is 1000 feet in ${ }^{\text {longth, }} 45$ feet above the water, and consists of three spans, of 217 feet each, two of 30 feet, and a draw 300
$f_{\text {fet }}$ in feet in length. The piers and abutments of this are
Winnipeg limestone. innipeg limestone.
Between Calgarry and the summit the Bow River is crossed eight times, requiring bridges, all of which are ${ }^{400}$ girders resting upon stone abutments, varying from tion there feet in length, and altogether on this secbridges, or are over 13,000 lineal feet of first-class
The or over $2 \frac{1}{2}$ miles in total length.
Toost atteck-laying gang was the one that attracted the rectly gltention, and their progress could be most diWhich the daily and formed, as it were the basis upon mated. the daily advance of the whole work was estimated. In 1882 the average day's work varied from
2.28 mina f_{0} the miles per day, in October to 3.22 miles, in August ${ }^{\text {Becatative }}$ seven weeks ending Sept., 47, or in 42 con3.21 miles wing days, they completed on an average ${ }^{\text {ono }}$ day mas day. The greatest length laid in any daily progress 4.10 miles, and on three occasions the in 35 progress was 4 miles. The best record was a mile ${ }^{0} \mathrm{za}_{\text {ampled }}$ minutes. Remarkable as this progress was, un${ }^{\text {ex }} 8$ ceeded in in any previous railroad experience, it was 28, when 6.38 mi. The greatest day's work was July progreass 6.38 miles were laid, and the greatest month's ${ }^{\text {Wrare }}$ laid, bess, miles aild, besides 5.11 miles of side track, oI 97.46 July, from the ther. In the first six working days of of rail from the 2 nd to the 7 th inclusive, 25.86 miles of 4.31 milese completed in one week, or an average L_{a} gdon, miles per day. Towards the last of Messrs days the Shephard \& Co's contract, in 48 working miles, or an avelaying gang laid and finished 166.38 Per day, an average for the whole time of 3.46 miles everry tex exclusive of the sidings which were laid about
larg miles. large boarding. The track-laying gang were kept in one thoarding cars, built in two stories; in the upper ${ }^{\text {maseged. }}$ man slept, and in the lower they lived and Each car afforded sleeping accommodation to These cars, with the necessary cooks, in. ${ }^{8}{ }^{\text {pectotors and }}$ and workshop cars, formed a permanent train
and to the $^{\text {Were }}$ always left at the front. The rails, 574 lbs. Pruseian yord and 30 feet long, were about half from the They are orks of Krupp, and the remainder English.
mostly aontly brought ordinary flat foot pattern, and were
and Winn Montreal by rail, via St. Paul innipeg, a railway journey averaging 1500 miles.

After being landed in this country, they were taken up, according to convenience, and stacked ready for use at construction depots, which were placed about 100 miles apart, and where all the materia! for the track was sent as near to the work as possible. From these construction depots trains were sent to the nearest siding to the front, taking an accurately adjusted supply of rails, ties, and other requirements for one mile of track. These trains consisted of 20 flat cars ; the ties, or sleepers, of which there were 2,640 to a mile, were loaded 300 to a car ; the rails were loaded 30 pairs to a car, besides 5 boxes of spikes, weighing 1 cwt each, 60 pairs of fish-plates and one box of bolts.

By this arrangement there were no surplus materials left scattering along the line, no redundancy of supplies in one place and no scarcity in another. The working construction trains brought up these materials from the nearest siding to the end of the track. The ties were here loaded into carts and carted along the side of the line to where they were worked, distributed, spaced and lined for a considerable distance ahead of the track-layers. The rails were unloaded on each side of the track in equal quantities. The engine then went back, and a trolly drawn by horses was run up, on which 15 pairs of rails were loaded with the necessary fish-plates, bolts and spikes. When the trolly reached the last rail laid, a pair of rails were taken off, laid in place, guaged, and the trolly run forward. A gang followed, linking on the fish-plates, then three gangs of spikers, the first gang spiking the ends and the centre, and the others following till the whole was spiked. When the last rail was laid a second trolly was brought up, and the first thrown off the rails to let it pass, then replaced and sent back for another load. On the 7th July, when the six miles were laid, there were 24 men to handle the iron-that is, 12 unloading it from the cars and 12 to load the trollers. It tock the same number to lay it down in the track. The total number of rails laid that day was 2,120 , or 604 tons; 5 men on each side of the front car handed down 1,060 rails, whilst the two distributors of angle plates and bolts handled 2,120 rails, 4,240 plates and 8,480 bolts.
These were followed by 15 bolters, who put in on an average 565 bolts each; then 32 spikers, with a nipper to each pair, drove 63,000 spikes, which were distributed by 4 peddlers. The lead and gauge spikers each drove 2,120 spikes, which, averaging 4 blows to a spike, would require 600 blows an hour for 14 hours. There were 16,000 ties or sleepers unloaded from the trains and re-loaded into waggons by 32 men , and 33 teams hauled them forward onto the track, averaging 17 loads, of 30 sleepers to each team. On the track 8 men unloaded and distributed them and 4 others spaced them, 20 others spaced and distanced the joint ties, and 20 others arrangod and adjusted displaced ties immediately in front of the leading spikers. Four iron car bys and six horses hauled the iron to the front.

When the great distance over which all this material was Brought is taken into account, with the immense daily demand, continued without intermission week after week, it will appear to have been no small feat to have kept all this moving to the front so regularly and with such punctuality that during the two seasons the longest delay for material that ever occurred was not over three hours' duration. At points about 130 miles

