

Let A', B', C' be the points of section of BC, CA, AB, respectively.

Then
$$CA' = \frac{ma}{m+n}$$
; $CB' = \frac{nb}{m+n}$

... area
$$CA'B' = \frac{1}{4} \frac{ma}{m+n} \frac{nb}{m+n} \sin C;$$

similarly
$$AB'$$
 $C' = \frac{1}{4} \frac{mb}{m+n} \frac{nc}{m+n} \sin A$;

similarly
$$BC'A' = \frac{1}{4} \frac{mc}{m+n} \frac{na}{m+n} \sin B$$
.

Summing the three areas,

$$\frac{1}{2} \frac{mn}{(m+n)^a} \left\{ ab \sin C + bc \sin A + ca \sin^{\frac{1}{2}} B \right\}$$

$$= \frac{1}{2} \frac{mn}{(m+n)^a} \left\{ 3 bc \sin A \right\}$$

since
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} =$$

 $\frac{bc \sin A + ca \sin B + ab \sin C}{3 abc}; \text{ hence}$

$$\frac{\text{area } A B C}{\text{area } A'B'C'} = \frac{\frac{1}{2} bc \sin A}{\frac{1}{2} bc \sin A - \frac{3}{2} \frac{mh}{(m+n)^2} bc \sin A}$$
$$= \frac{(m+n)^2}{m^2 - mn + n^2}.$$

It follows that the second triangle is to the third in the same ratio, and so on; hence

$$\frac{\text{area } A \ B \ C}{\text{area } r^{\text{th}} \text{ inscribed } \triangle} = \left\{ \frac{(m+n)^{\alpha}}{m^{\alpha} - mn + n^{\alpha}} \right\}^{r}.$$

Also, putting A, A_1 , A_2 , etc., A_r for the areas of the given triangle A B C and the 1st. 2nd, etc., r^{th} inscribed triangles.

$$\frac{A}{A_1} = \frac{A_2}{A_3} = \frac{A^4}{A_4} = \text{etc.}$$

$$= \frac{A_{2r}}{A_{2r+1}} = \frac{(m+n)^2}{m^2 - m^2 + n^2};$$

hence

$$\frac{f. (A, A_2, \dots, A_{2r})}{f. (A_1, A_2, \dots, A_{2r+1})} = \frac{(m+n)^2}{m^2 - mn + n^2}.$$

$$\frac{1}{1.2}\tan\theta + \frac{1}{2.3}\tan^2\theta - \frac{1}{3.4}\tan^2\theta - \frac{1}{4.5}\tan^4\theta + \text{etc.}$$

Write the series,

$$\frac{2-1}{1.2} \tan \theta + \frac{3-2}{2.3} \tan^2 \theta - \frac{4-3}{3.4} \tan^2 \theta - \frac{5-4}{4.5} \tan^4 \theta + + \text{ etc.}$$

which readily breaks up into

$$\tan \theta - \frac{1}{3} \tan^2 \theta + \frac{1}{6} \tan^6 \theta - \text{etc.} (= \theta)$$

$$- \frac{1}{3} \tan \theta + \frac{1}{6} \tan^2 \theta - \frac{1}{6} \tan^6 \theta + \text{etc.}$$

$$\left(=\frac{1}{\tan \theta}\log \cos \theta\right)$$

$$\frac{1}{2}\tan^2\theta - \frac{1}{4}\tan^4\theta + \frac{1}{6}\tan^6\theta - \text{etc.}$$

$$(= -\log \cos \theta)$$

$$-\frac{1}{2}\tan^2\theta + \frac{1}{2}\tan^4\theta - \frac{1}{2}\tan^6\theta + \text{etc.}$$

$$\left(=-\frac{1}{\tan \theta}\left\{\tan \theta - \theta\right\}\right)$$

adding the partial sums and simplifying.

Series =
$$(\cot \theta - 1) \log \cos \theta + (\cot \theta + 1) \theta - 1.$$

This result may also be arrived at by multiplying the proposed series by $\tan \theta$, differentiating with respect to $\tan \theta$, summing and integrating.

139. Prove that

$$\begin{vmatrix} \frac{b+c}{a}, & \frac{a}{b+c}, & \frac{a}{b+c} \\ \frac{b}{c+a}, & \frac{c+a}{b}, & \frac{b}{c+a} \end{vmatrix} = \frac{2(a+b+c)^2}{(a+b)(b+c)(c+a)}$$

$$\frac{c}{a+b}, & \frac{c}{a+b}, & \frac{a+b}{c} \end{vmatrix}$$

Reducing each row to a common denominator and dividing thro' by

$$\begin{array}{c|cccc}
\hline
abc (a+b) (b+c) (c+a) \\
(b+c)^2, & a^2, & a^2 \\
b^2, & (c+a)_2, & b^2 \\
c^2, & c^2, & (a+b)^2
\end{array} = 2 abc (a+b+c)^a$$

For a new determinant, subtract the 2nd column from the 1st for the 1st row; subtract the 3rd column from the 2nd for the 2nd row; and add all three columns for the 3rd row.