proceeds on the ild m be even, ti The law may rm. The produ

 $(m-1)^{\text{th}}$ degree y Prop. XVII.,

er proof, that the ion F(x) = 0 is cewise.

FIFTH DEGREE.

e mth degree, whit. the first or to t ished, assuming t

۱<mark>5</mark>),

$$t^{3} e_{2} \downarrow_{2}^{3} = \downarrow_{1}^{5}, t^{4} h_{2} \downarrow_{2}^{5} = e_{1} \downarrow_{1}^{5},$$

therefore $\downarrow_{2} = a_{1}^{5} \downarrow_{1}^{2}, a_{2}^{5} \downarrow_{2}^{2} = h_{1}^{5} \downarrow_{1}^{4},$
 $e_{2}^{5} \downarrow_{2}^{3} = \downarrow_{1}, h_{2}^{5} \downarrow_{2}^{4} = e_{1}^{5} \downarrow_{1}^{3}.$

Now $a_1^5 \rfloor_1^2$, being equal to \rfloor_2 , is a root of the equation $\zeta_1(x) = 0$. And $a_1^5 \int_1^2$, involving only surds that occur in r_1 , is in a simple atate. Therefore, by Prop. 111., $a_2^5 \downarrow_2^2$ is a root of the equation $\psi_1(\mathbf{z}) = 0$. Therefore $h_1^5 \perp_1^4$, and therefore also $h_2^5 \perp_2^4$ or $e_1^5 \perp_1^3$, are roots of that equation. Hence all the terms

(63)

are roots of the equation $\dot{\psi}_1(x) = 0$. But a_1 , e_1 , h_1 , are all distinct from zero; for, by (63), if one of them was zero, all would be

zero, and therefore \Box_1^5 would be zero; which by §6, is impossible. , the root, as the From this it follows that no two terms in (64) are equal to one another; for taking $a_1^5 \perp_1^2$ and $e_1^5 \perp_1^3$, if these were equal, we should

dratic has a ration have $e_1 t$ $J_1^{t} = a_1, t$ being a fifth root of unity; which; which by uadratic are ration §8, is impossible. This gives the equation $\psi_1(x) = 0$ four unequal ic $\varphi(x) = 0$ is a roote; which, because it is of the second degree, is impossible. tion F(x) = 0 is Therefore the first term in (55) is not equal to the second in (39). In the same way it can be shown that it is not equal to the third. KIV., Δ_1 is the **Thre**fore it must be equal to the fourth. In like manner the first in use J_1 is ration

 $a_1^5 \ a_1^2, e_1^5 \ a_1^3, \ h_1^5 \ a_1^{(30)}$ is equal to the fourth in (55). Because then $t \ a_2^{\frac{1}{5}} = h_1 \ a_1^{\frac{3}{4}}$, and

are rational. quadratic has a or that, the roots of the sub-auxiliary ψ_1 (x) = 0 being the c terms ts Δ_1 and Δ_2 , the Δ_1 , Δ_2 , etc., there is no particular cognate form of EJ that is not a ts Δ_1 and Δ_2 , \dots , μ_c , λ_1 be a particular cognate form of H, there is no particular cognate , each term in (55) form of $H \perp$ that is not equal to one of the terms $h_1 \perp_1$ and $h_2 \perp_2$.) cannot be equal Hence, since $h_1 \rfloor_1 = h_2 \rfloor_2$, $H \rfloor$ has no particular cognate form Suppose if possidifferent in value from $h_1 \downarrow_1$. Therefore, by Prop. III., $h_1 \downarrow_1$ is in (39). Then, rational.

6

 $t \downarrow_{2}^{1} = a_{1} \downarrow_{1}^{2}, t^{2} a_{2} \downarrow_{2}^{2} = h_{1} \downarrow_{1}^{3},$