Analysis of Texture

The preferred orientations of crystallites in industrial materials can influence the properties of manufactured objects. adding a directional dependence to such quantities as corrosion resistance, yield strength, creep resistance, elastic stiffness and thermal expansion. Neutron diffraction averages over the bulk of a specimen to obtain a quantitative analysis of the distribution of crystallite orientations, also called the crystallographic texture. Texture is a key measurement for evaluating the effects of process parameters on industrial materials, such as rolled plates, extruded tubes and forgings.

Volume-fraction Analysis

Complete neutron diffraction patterns are analyzed to determine the volume fractions of components in composite materials, such as graded ceramics, metal-matrix composites and precipitates in alloys. Volume fractions as low as 0.5% can be evaluated quantitatively. Data can be acquired as a volume-average of bulk material, or as a non-destructive spatial scan of the interior of a component. Volume fraction data serve as indicators of process-control. This analysis method can be exploited to monitor precipitation, reactions and phase transformations at realistic materialprocessing temperatures.

New Techniques

The versatile nature of neutron diffraction makes it an ideal tool to undertake novel inquiries into industrial issues. Developing techniques include non-invasive thermometry, real-time tracking of oxidation, monitoring of electrochemical reactions, and largevolume-scanning of microstructural homogeneity.

Texture is determined from the variation of diffracted neutron intensity versus direction in material, plotted here as a stereographic pole figure.

For more information or to arrange measurements contact Dr. John Root:

National Research Council Canada Steacie Institute for Molecular Sciences Neutron Program for Materials Research Chalk River Laboratorics Chalk River, Ontario Canada, K0J 1J0

 Phone:
 613-584-8811, Ext. 3974

 1-888-243-ANDI

 FAX:
 613-584-4040

 E-mail:
 NPMR@nrc.ca

 WWW:
 http://neutron.nrc.ca

Aerospace
Automotive
Shipping and Rail
Oil and Gas
Nuclear
Pressure Vessels
Piping
Steel
Aluminum
Advanced Alloys
Ceramics
Composites