and to student alike, for the fact is generally overlooked that they are alone strictly applicable to the elements in the state of ferfect suas. I could not suggest a better illustration of the kind of error to which the carcless use of " molecular formule" commonly leads than that unconsciously previded by "Science Master" him. self. His equation aluve givea has no justification in fact, as far, at least, as the symbol Na_{2} is concerned. The experiment to which it refers is not one made with sodium gras, whose molecule may contain two atoms (though V. Mejer thinks this doubtful), but with the liguid or solid element, whose molecule may contain 200 atoms for aught we know to the contrary!

As mistakes such as that into which "Science Master" has so innocently fallen are very common, even amongst writers of text-books, it may be well to point out the grounds for the cataous position now taken by an increasing number of chemists in reference to this matter. All the facts known to us concerning gases or vapors near to their condensing point, lead to the conclusion that their molecules are then much more complex in atonic structure than when they are in the state of perfect gas, and it is difticult to reṣist the conclusion that their complexity must be still greater when the liquidand solid states are reached. We have notany means at present of determining the extent of this atomic condensation, hence it .s more in accordance with the spirit of science to put aside mere assump. ti, ns and keep well within our facts. And that is just what I have done; for while carefully teaching the two-atom structure of the gaseous molecules in the singularly small number of cases about which we have direct evidence, the general fornula used are confined to the simplest expressions which can accurately represent the relative atomic weights concerned in chemical changes. By so doing we aroid attompting to teach more than we really know, and so escape pitfalls such as those into which "Science Master" so easily stumbled.

I am, dear sir.
Faithfully yours,
J. Emprson Revsol.ths.

J. Scath, Esq.,

Inspector of High Schools.

To the Enditorof the Educational Wrening,
Dear Sir,-About Mir. Micrchant's communication with reference to the study of chemistry in high schools, I wish to say a few words.

With the essential parts of my letter to the Webkis he agrees, still, there are a few points upon which a little information may le gained.
Mr. Merchant misapplies his utilitarian idea in regard to the theory of chemistry, for if he were well up in all the principles of the study, I am sure lie would find that to keep to theory in every respect would serve the true utilitarian idea as well as furnish the best mental training. The Education Department, I maintain, has virtually selected a text-booh on chemistry.
Does Mr. Merchant suppose that, when the stuctent knows that he is to be examined on Reynolds' Chemisiry, he will not buy the book? I believe that in the majonty of cases the book will be procured. Then there are always a number who study the subject while teacling, and get no instruction other than from a text-book. Will Whey not buy the work? Mr. Merchant makes
some very nice statements about the student investigating everylhing for himself. I am of the opinion that hardly one out of every ten schools will be able to furnish each student in the class, apparatus, etc., to make each experiment. They haven't the time, nor will one-tenth of the schools be so amply furnished with materials to jermit it. How are students who know very little, if any, chenistry, to be suddenly transformed into original investigators? It takes time to lee a discoverer in chemistry. One requires tu know vastly more than the little he has time to learn in the six or ten months he has at his dispusal in the ordinary nigh school laboratory.

The science of chemistry has made gieat progress only since Dalton proposed the "atomic" theory, and dvogadro discovered the simple relation that exists between the volumes of gases entering into combination and the resulting volume. The study of chemistry has become vastly easier since the "atomic" theory was advanced. To understand the theory of chemistry thoroughly, and to be able to apply it in the case of all compounds, furnishes the best training to the mind; and I maintain that, to keep the theory, which has done so much to develop chemistry, and which is its foundation, intact ar far as possible, one must represent actually what takes place in a reaction, even if it is possible to represent it more simply. This idea is exactly in accord with the teaching of the learned Professor of Chemistry in University College, Toronto. If Mr. Merchant has to jizepare any students for a university examination it would be well for him to teach the correct equations, or confusion may lee the result. Tilden, the author of a book on chemical philosophy, a work, the study of which would give the student a true and complete iden of chemistry, says: "Chemical changes involve nether the destruction nor creation of matter, but simply a redistribution of the materials of which the acting masses are composed. In order, therefore," he goes on to say, "to represent syimbol. ically the results of any given action, it is only necessary to write down the formule of bodies engaged, and then to transpose their symbols in such a manner as to build up the formula of bodies which are produced." For instance, we have free hydrogen and fice chlorine acting on each other, there is merely a redistribution of the molecules. Thus: $\mathrm{H}_{2}+\mathrm{Cl}_{2}=\mathrm{IICl}+1 \mathrm{Cl}$, or 2 IIC . Wurtz in his "Atomic Theory," a text-book on the pro. gramme of studies in University College, Toronto, treats the point in question in a similar way.
Thus I think I have shown that Mr. Merchant is not quite correct when he makes the statement that it is customary with chemits to use the simplest ratios in representing reactions.
Since writing the above, Mr.Spoton'sletter has appeared. A few words with regard to it. Keynolds' lrook is full of mistakes if the oljection I take to it is correct, and I contend it is. I have given some good authorities as to the point of contention. Mr. Sprotion has very conveniently taken a very isolated case from Tilden's book. Instead of the cquation $2 \mathrm{KClO}_{3}=2 \mathrm{KCl}+3 \mathrm{O}$ one may take $\mathrm{KClO}_{3}=\mathrm{KCl}+1 \frac{1}{2} \mathrm{O}_{2}$ for the com . parison of weights. If it is only for convenience in calculating the weights that the latter is taken why not cancel the 2 's, thus, $\mathrm{KClO}=\mathrm{KCl}+3 \mathrm{O}$, and then calculate the weights? One would avoid
fractions, have it just as simple, and besides, we would use a correct equation. Tilden uniformly uses molecular formute. The above equation is about the only one in which he divides the molecule. It is some time since Mr. Spoton graduated. Things have changed since then. Therefore, 1 would recommend him to obtain the upinion of Irofessor like, of the Universty of Turunto, and I thinh he will find that my views accord with his. When, for the sake of simplicity merely, you represent what is not true, then you are doing what is wrong.
Mr. l:illis is, I think, correct in saying that the students time, which is genetally limited, will be wasted if he has to investigate everything ior himself. I belicue there are very few schools in the Province in which every student, if the class be of any size, will perform evers experiment.

I wonder how many high schools will furnish all the apparatus necessary for the experiments mentioned in Reynolds' book !

Sccond class candidates, who haven't studied the sulject befne, will find the bstract consider. ations about atomicity nd calculations of atomic weights of less practical valuc than if they were laught a good general idea of chemical substances together with sufficient theory that they may understand the composition of componnds. I imagine that the nice litte reasoning contained in Chapter V'. of Reynolds' booh would be liat poorly appreciated by a student who hows nuthing more about chemistry than is contained in the preceding four chapters.

Thanhing you for the space reguired for communication, I am, yours truly,

Solence Dastek.
November 30, $1 \mathrm{SS}_{5}$.

Turespecial committee appointed by the Board of Education to purchase physical and chemical apparatus for Paris Iligh School is proceeding with the work as rapidly as circumstances will permit. The selection has been made and the purchase is now only a matter of pric: and quality. The vacant room at the high schyol has been fitted up as a laboratory where experiments will be conducted as soon as the new arrangements are perfected. A reference library for the use of teachers and pupils is also spoken of. The new regulations issued by the Education Department entailed considerable expense upon the country, and it is to be hoped that there will be corresponding benefit to the pupils. - Jaris Star-Trauscript.
A consmunication from A. Cruickshank was read, stating that the executive conmmittee of the Ilamilton Teachers' Association are desirous of holding a general meeting during the year in order to secure the Government grant, and advance the interests of the body. They asked that Friday, the 27 h inst., be given for that purpose. The charman asked the board what was their will with regard to Mr. Ciuickshank's letter? IIe (Mr. Morgan) had discountenanced the idea of a holiday when consulted on the sulject by Mr. Cruickshank. Mr. Brennen moved, seconded by Mr. Smith, "That the request of Mr. Cruickshank be not grant-ed."-Carricd. It seems to be the general opinion of the board that the teachers could attend to the matter in their own time (say on Saturday) without disarranging the schools. - Refort of SHamilton lioard of Education.

