RAILWAY SIGNALS AT THE VIENNA EXHIBITION.

We illustrate, from Engineering, on page 323, a system of switch exhibited at Vienna, in tho Hungarian dopartmert, by Melsrf. Pravicini and Clement. This arrangement consists chicfly of an iros bar a, b, between 6 ft . and 10 ft . long, of strong section, and fistened to the outside of the rail, which is next to the stock-rail of the switch. The one end of this bar is carried by a bolt passing th.ough a bearing c, and the web of the rail, whilst tho other end is provided with a nose placed under the head of the rail in order to prevent the untimely lifting of the bar. At a corresponding distance from the latter end of the bar a wedge d, is fasteucd, which rests upon a wedge f, of the same shape, and slides over it on pointing of the switch. This wedge f, is connected by the bell crank g, and the rod h, with the tongue of the switch; the bell crauk is tastened with its fulcrum k, upon the bearing plate i, which serves also as sliding surface for the bell crank at the point wherc the wedge f, is fastened; the two wedges d, and f, have inclined sides of 45 deg. In the rormal condition of the switch the bar a, f, is level with the rail, whilst during the chauglag of the points, the motion of tho tongue is transfered bi the screw bar and the bell crank to the lower wedge, which presses with its inclined surface upon tue top wedge, so tha; the bar a, b, is lifted over the lever of the rail, but sliding back on the other side of the wedge occupies again its normal position If the tongue, however, is not firmly pesced against the stock-rail, the bar a, b, will project above the lever of the rail, bit it will be pressed down by the wheels of the passing train when the tongue is forced into its $p \cdot o_{2}$ er position before the wheels have reached it. This safety arrangement is intended for preventing the danger of running off the rails if the tongue is not placed in the proper position. It is staf d that practical use of this arrangement has given catisfac.ory re $u l$ ts.

The tong tues are simply moved by hand, and the turning of the sigual disc is effected by the same lever; this latter is connected with the lever V, which is provided at the upper end with an oval hole, through which the pin x, is passed with one ead, whilst the other end is connected with the up-right bir which carries the signal disc. Movis the lever V, will therefore produce a turning of the upright bar and the disc.

PREPARATIONS FOR THE DEPARTURE OF THE 'IRANSI'I OF VENUS EXPEDITION.

The time is now rawing on for the departure of the English expedition for the observation of the tralsit of Venus. In a few weeks the parties proceeding to all the stations except Egypt ought to be on the sea, At the dinner of the Astronomical Society Club, on the 8th of this month, Sir George Airy stated that he had reviewed the English and Russian plans for carrying out the work, with the Society's illustrious guest, Otto Struve, the Astronomer Royal of Russia, and had arranged them in complete harmony with one another. We may therefore consider that the time is ripe for the consideration of the English plans in a more definite ehape than when we noticed them. Wo may add that the gencral scheme, as explained in our prepious article, is unaltered.

To take up tho question so as to make its features intelligible to readers who are no: astronomers, we may again point out that the "parallar of the sun" may bo said to be tho angle that any point of it subteads on such a base line as the carth affurds; and without again describing how this angle is measured by tho observations taken, wo may treat it as an angle taken in three ways.
'The first is Halley's method, on which the angle is taken between two chords across the disc of the sun, each one being the apparent path of Venus as seen from some position whero the entire transit is visible. Such positions are takun in pairs in suitable northe:n and southern localities-tho length of the bavo line depending mainly on their difference in latitude. This work is carried out, as far as England is concerned, by Kerguelcn's Island-covered by Rodriguez—and by New Zealand. These form tho southern ends of bases coupled with certain Russian stations dotted across Siberia, connected together by a telegraph wire for obtaining longitude by telegraph.

The second and thitd measures and lines of bases are on

Delisle's method. One base line dopending on observations takon at ingress, aud extending from the Sandwich Isles to Kerguelen's Island, Rodriguez falling near the latter. 'I'he other base line depends on tho observations taken at egress, ono end being at New 7 raland, with Kerguelen's Island sufficiently far along it to bl. suostitute should it fail; tho opposito end being Egypt and certain Russian stations not far fron the Caspian Sea. Rodriguez falls too near the centre of thas base line to be of muci use.

Having thus recapitulated our stations in their positions in the base lines which we dreve in on the figures in our former article, to which-in the aspect in whirh we endeavoun to mako the matter clear - we cannot do better than refer our readere, wo will pass on to the equip. ping audarming of each point, and the peculiar character of ita duties.

We may first notice that the work of every station must consist of two branches - first, the work of observing and recording the phenomena of the actual transit when it takes place; second, the systematic work-which may occupy many weeks or months-necessary to establish the latitude and lon. gitude, $s 0$ as to fix tho precise position of the station and give meaning and value to its observation and the records ot the phenomena seen at transit.

Under the head of observations and records of the actual transit must be classed the work performed by what we may cail tho gazing telescopes, from the larger equatorials dowa to the 4 in. ones with tripod stands and slow motion imparted by haud, as well es all the peculiar work of tho photobellegraphs.

Figs. 3 and 4 , page 326 , are fair specimens of the equatorials. The former we give on account of its historical interest, being the Lee telejcope, with which the late Admiml Smyth drew up the well-known "Bedford Cataloguc." Those who are familiar with this work may remember the charatiericiic exjoyment with which Admiral Sinyth divells on the $8 \frac{1}{6}$ ft focal leageh, the object-glass by Tulley (${ }^{5}{ }_{10}^{9}$ in.), witit all its beauties of correct form and "space penetrating power," and the sbarpness with which it came to focus, canrying the reader so along with him that he almost feels as if it was an extraordinary instrument, perhaps almost making an audible click as it camo to focus. It is unnecessary, therefore, to dwell on features which. if the irath must bo told, are not in these days extraordinarily good, even in the optical parts. It may be said briefly that the mounting, though old-fashoned, is simple and effectual, the clock powerful and good, and the iustrument altogether capital for the work required. Astronomers who know what a favourite tbis telescope has been in its day, and the excellent work ic has done, looh at it with a feeling akin to respect an'l affection, and may feel ghad it should have the prospect of agaia performing inportant work. In the figure it is shown, we need hardly say, pointed towards some polar star, near its upper culminat:on. Consequently, for the transit to be seen with the sun rising in the south-east, it is necessary that the side of the building in the corner directly beyond the centre portion of the telescope should be capable of removal, and it was wo made three years ago by Sir George diry, when desigoing the huts for the expedition. lig. 3, is an equatorial, designed c. d made by Sum us, with a 6 in. object-glass; the mountiog is, of course, good, and of a general character, readily admittiog of adjantment to almost any lalitudo. Beyond this there is little to remark in connection with it. With these and all the larger telescopes the sun is to be observed not directly, but by refection off the surface of a glass prism ; by which means not only is the glare enormously diminished, but also the heat rays which pass on through the glass being got rid of, there is no risk of the dark glass srddenly failing and the observers being binded - a fate which has too often befallen examiners of the sun Doublo image micrometers are used, as described in our previous article, and contact observed in as nearly as possible the samo phase by all the English and liussian observers.

Fig. 1, exhibits the phor theliograph employed at every main station. It is designed anci made by Dalmeyer, and descrics a few words. Its optical part cinsists of a tubc with an object glass resembling that of al. equatorial tciescope, but constructed so as to combing the optica. focus with. that of the chemical rays, so that to the eye it would not be truly corrected for colour, but is admirably adapted for facilitating adjustment to the work required. A little bejond the focus of the object

