specifications and writes a program in accordance with them. In large
systems there will be some interaction between these two steps but they
are essentially separate procedures.

Software errors are not always the result of carelessness (for example, a
missing coma). Frequently, errors cannot be discovered until after a
program has been implemented:

The “unforeseen events” that cause trouble are less often unfore-
seen external events than perverse concatenations of perfectly
normal events.

Complex interaction between the various parts of a program can occa-
sionally produce wholly unexpected, erratic results. There are too many
possibilities for interaction in modern computer systems for it to be
feasible to test all of them, so numerous techniques have been developed
to find errors.

Two classes of errors occur in writing programs from specifications. The
first is the “typo” — A Mariner space probe was lost because a period was
put where a comma should have been. The second, the “thinko,” involves
minor errors in reasoning. Most of the latter result either from the fact
that the specifications themselves contain ambiguities or lapses in reason-
ing, or from the problem that English, with all its ambiguities, has become
the language most often used for specifications.

In theory, it should be possible to check a program against its specifica-
tions, but the techniques of “program verification” are not as accurate as
the name would suggest. Ironically, both Greg Nelson and David Parnas,
two top software engineers in this area, have become vocal opponents of
the Strategic Defense Initiative because they believe it is impossible to
build trustworthy software. Although program verification is an impor-
tant and powerful tool, it is not a foolproof solution. In large systems the
full program is never run, since full-scale testing can be embarrassing or
truly impracticable. Consequently many possibilities are never investi-
gated. Smart designers and programmers are the best antidote for bugs,
but they cannot provide a complete solution. Techniques of simulation
also help to identity errors. Here person A writes the specifications for
the original program and then person B writes specifications for a pro-
gram designed to imitate the environment with which the original pro-
gram is to deal. This method is of great help in identifying errors but it,
too, is affected by shared oversights and misconceptions. Having identi-
fied errors, fixing them, especially in large systems in which they are
deeply imbedded, can be a difficult process and may itself create further
problems. For example, the Advanced Research Projects Agency (ARPA)
computer network needed a major redesign after it grew beyond a certain
size.

To cope with the persistence of errors, humans have developed “fault-
tolerance” techniques, based on the idea of building spare parts into a

13



