the scale. Our unit of measurement is the distance from the :un to the earth, and this has nover yot heon determined in milos to the satisfaction of astronomers.

How then can the distance of the sun be found by observing the passage of Venus across his face? 'lio explain this simply, it will be better to consider not the distance of the sun, but the diameter of the sun in miles as the object of search. If cither can bo found the other can be calculated from it by a simple propor. tion (which noed not be hero discussed) so that the above question becomes-"How can wo, by oliserving the passage of Venus across the sun's disc, find the diamoter of that disc in miles !" A general explanation is all that will be attempted here. Reforring again to the illustration of the map, but letting the map now correspond not to the solar system, but to the sun's dise only, it is obvious that if we knew the actual distance in miles between any two points represented on the map, we could readily find the distance in miles hetween any other two points, the map being supposed accurately drawn. For oximple, if wa have a map of any city, Montreal for example, carefully drawn, but without any scale attached, we could by knowing the distanco bstween any two paralloi streets, such as St. ('atherine streot and Dorchester street, tell the entire length of the city, because the ratio of this length to the othor is given by the map. Similarly in the case of the sun's dise, if wo know 1 " the distance in miles between any two parallel lines on its surface, and $2=$ the ratio of the whole diameter to this distance we evidently can tind the diameter. The problem thus hut consists of two parts:

IN The distanco of the two parallel lines in miles.
2° 'The ratio of the diametor to this distance.
If we roverse the order of these we may say that they correspond to
1° Drewing our map, but withort knowing the scale.
2° Finding the seale.
Tho map, however, we lave to draw of the sun's disc is a bare outlino. If we daw any circle to represent the sun s disc, we have morely to lay down on this circle \& diameter and two other lines parallel to one another. (See Fig. 2.)
II K, C I), Paths of Venus as sern from Northern on' Southern Stations. I B., distance between the 1 chorits.

But how are tho lines on the sum's face to be selected ? This may he explained by another illustration. Go into a room with a gasalier hung from the ceiling, sit down on a chair, look at one of the glass gloles, and notice what part of the opposite wall it hides from you, then sliding the chair in a straight path across the room observe that the part of the wall hidden from time to time during the motion will form a line on the wall. Next, stand up, and moving along the same path on the floor you will, of course, sec that the glass glowe hides a different line on the wall. It is clear that the distance apart of these two lines depends on the difference of the heights of the eye in the tro cases and on the relative distances of the glass globe from the eye and the wall. Here the wall corresponds to the sun's face; the glass globe corresponds to Venus, and would correspond better if it moved across betreen you and the wall, instead of compelling You to move in order to produce the same effect. Another illustration might be this: Manging up a large circular sheet of paper against the wall to ropresent the sun, and getting a friond to pass a cent steadily be-
tweon it and your eyes while jou, at a considerable distance, are on the first occasion sitting down, and on the second standing up, you will see two different lines traced out.
L. t tho observers be at A and B, lig. 3 , the two ex. tremitios, suppose, of the diamoter of the Earth (E), which is perpendicular to the ecliptic. Ihen, when the observer A sees the contre of Veaus projected on tho sun's dise at a, the observer at B will see it at b; and the lines CD and G II will represent the lines or the paths that appear to be describsd across the disc. The distance apart in miles of theso two lines can bo found without any great dificulty, hecanse it depends obviously on the distance between the stations of the two ribservers, which is easily found, and on the known ratio between the distances of Vonus from the Sun and from the Earth, about $2 \frac{1}{2}$ to 1. Thus une part of the problem is solved, viz, that corresponding to mea. suring the distance batween two parallel streets on the map of Montrcal.

The most difficult part, however, romains, viz., that which correspends to finding the ratio ou the map listween the length of the whole city and the distance just mentioned. We have to find the ratio of the whole diameter of the sun to the distance betwaen the two lines on its surface that heve bsen obierved. The obser vations for this purpose are simply enough stated. The two observers already mentioned have only to notice the exact duration of the passage in each rase.

Prepallations at meghll college FOR OBSERVING THE TRANSTT OF VENUS, DEC. 6th 1889.

Ar the time of the transit of 1874 the Colloge was very poorly supplied with astronomical instruments. It had a refrating tolescope of $2 \mathscr{4}$ inches aperture, which, together with a small trausit instrumont and chronometer for taking time observations, constituted practically its whole equipment. In order to call public attoation to our wants, I wrote a letter, therefore, to one of the daily papers, pointing out the importance of the coming transit of 18 S 2 , and the need of proper instruments to observe it ; but this had no immediate effect. About the end of the year 1878 gome of our citizens who felt an interest in astronomy held two or three private meetings to consider the possibility of establishing a public astronomical observatory as an independent institution governed by trustecs. In accordance with a roquest from triem, I wrote a letter on the subject which was inserted in the newspapers in January, 1879, and in this I again directed attention to the approach of the great astronomical event. The times were apparently unpropitious. There was no public result.

In Soptember, 1879 , however, Mr. Blackman, B.A., of Talo College, U. S., then a resident of this city, made a very handsome donation to the College of astrodomical instruments, including a $6 / 4$-inch equatorical of $7-\mathrm{ft}$ focal length, a large transit instrument, an excellent mean time clock, a sidereal clock and chronometer. Subsequently, two good but smaller telescopes of $41 / 4$ and 4 inchea aperture were placed in the College, one left to the Trafalgar Institute by the late Donald Ross, and committed for safe keeping to McGill College, and one lent by G. A. Drummond, Esq. As faras instraments sufficient for transit observa-

