The socioeconomic consequences of these impacts will be significant, especially for those regions of the globe where societies and related economies are dependent on natural terrestrial ecosystems for their welfare. Changes in the availability of food, fuel, medicine, construction materials and income are possible as these ecosystems are changed. Important fibre products could also be affected in some regions.

Hydrology and water resources

Relatively small climate changes can cause large water resource problems in many areas, especially arid and semi-arid regions and those humid areas where demand or pollution has led to water scarcity. Little is known about regional details of greenhouse-gas-induced hydrometeorological change. It appears that many areas will have increased precipitation, soil moisture and water storage, thus altering patterns of agricultural, ecosystem and other water use. Water availability will decrease in other areas. a most important factor for already marginal situations, such as the Sahelian zone in Africa. This has significant implications for agriculture, for water storage and distribution, and for generation of hydroelectric power. In some limited areas, for example, under the assumed scenario of a 1°C to 2°C temperature increase, coupled with a 10% reduction in precipitation, a 40-70% reduction in annual runoff could occur. Regions such as Southeast Asia, that are dependent on unregulated river systems, are particularly vulnerable to hydrometeorological change. On the other hand, regions such as the western USSR and western United States that have large regulated water resource systems are less sensitive to the range of hydrometeorological changes in the assumed greenhouse scenario.

In addition to changes in water supply, water demand may also change through human efforts to conserve, and through improved growth efficiency of plants in a higher CO₂ environment. Net socioeconomic consequences must consider both supply and demand for water. Future design in water resource engineering will need to take possible impacts into account when considering structures with a life span to the end of the next century. Where precipitation increases, water management practices, such as urban storm drainage systems, may require upgrading in capacity. Change in drought risk represents potentially the most serious impact of climate change on agriculture at both regional and global levels.

Human settlements, energy, transport, and industrial sectors, human health and air quality

The most vulnerable human settlements are those especially exposed to natural hazards, eg coastal or river flooding, severe drought, landslides, severe wind storms and tropical cyclones. The most vulnerable populations are in developing countries, in the lower income groups, residents of coastal lowlands and islands. populations in semi-arid grasslands, and the urban poor in squatter settlements, slums and shanty towns, especially in megacities. In coastal lowlands such as in Bangladesh, China and Egypt, as well as in small island nations, inundation due to sea-level rise and storm surges could lead to significant movements of Major health impacts are possible, especially in large urban areas, owing to changes in availability of water and food and increased health problems due to heat stress spreading of infec-Changes in precipitation and temperature could radically alter the patterns of vector-borne and viral diseases by shifting them to higher