or to the sudden artest of one of the motors, which might result in damage to the generator armatures; and to provide also against racing of the Pelton wheel and dynamo, which would take place if the circuit was broken or the load suddenly thrown off one of the motors by a belt leaving the pulley. This has been accomplished in the following manner. Two electro-magnetic switches are placed in circuit with the dynamos and motors, and are so adjusted that, in the event of the current increasing to 3 amperes above its normal amount, one of them, and in the event of it decreasing to 3 amperes below it the other one, disconnects the line and motors from the circuit and throws into it in their 'ace a set of iron wire resistance coils, constituting an artificial load of the normal amount. If anything occurs to the line of motors to cause an abnormal increase or decrease of current, the dynamos are therefore automatically protected and continue to work as if nothing unusual had occurred. When either of the switches comes into actios, an electric bell calls the attention of the attendant. The continuance has been found to answer well in practice, and has on several occasions saved the dynamos from the risk of damage. The conductors between the station and the dredge form a completely metallic circuit, and consist of bare copper wire of No. 4 S.W.G. supported upon Johnson-Phillip fluid insulators. The supports are old 40 lb. rails, with a short hardwood cross-arm bolted to each about 2 ft. from the top; this arm carries the insulators for the conductors, while a third insulator, bolted to the top of the rail, carries a telephone wire connecting the generator-house with the dredge, the length of line being about two miles. Between the ends of the conductors on the bank and the motors in the dredge the two cables consist of seven No. 16 copper wires, and are heavily insulated with vulcanized indiarubber. The shore ends are clamped to the conductors near to one of the poles, a supplementary pole having to be used occasionall or to the sudden arrest of one of the motors, which might result in damage to the genthe other, geated to an interneous sist, drives the buckets, winches and recording cylinder of the dredge. As it is sometimes necessary to vary the speed or to stop the motor that works the buckets, a variable from wire resistance is proyided by which its field-magnet coils can be shunted. The motor that drives the pump acts as a current-regulator, for, when the bucket motor is switched off, or its speed varied, the pump motor absorbs the surplus electrical energy—revolving faster and causing the pump to throw more water, which, however, does not cause inconvenience. By this means great simplification in the working of the plant is attained—an important factor when electrical apparatus is placed in the charge of unskilled hands. The frames and platof the dredge, which is 80 ft. long and 20 ft. wide, are entirely of steel, and where possible, all the framing, ladders, buckets, etc., are constructed of the same material. The buckets, which have each a capacity of 3½ cubic feet, are filled and discharged at a rate of about welve per minute. This gives a lifting capacity, while dredging to a depth of 20 ft., of more than 90 cubic yards per hour, which is as large a quantity as can be economically treated on the tables for gold-saving purposes. The winches have separate barrels for the quarter, head and hoising lines, which are of steel wire, and each barrel is driven by a large worm wheel. A vertical shalt carrying a worm wheel is connected with bevel wheels below the deck, which are provided with friction clutches so arranged that the barrels can be thrown in or out of gear by moving the winch handle to one side or the other, all the winches being driven by a shaft below the deck. The dredgings, builders and gravel are delivered into a revolving cylinder to ft. long, constructed of lars set ¼ in, apart. Through these lars the gold and finer sand pass on to the tablos, the stones and debtis being retained and afterwards discharged direct into the river through the stone shoot. The tables are set at an inclination o unaltered. When the lamp is switched off it is entirely disconnected from the power circuit, so that it may be tauched without danger of implessant shock. A third switch disconnects the resistances and lamps from the power circuit during the day time, when the lamps are not required. The full available output of the plant is not utilized and a reserve of power is always maintained. The working duties of the plant as

Pressure of water in the pipes \$28 lb. per square inch.
n at the valve 195 lb.
at the nozzle 188 lb.
Speed of the l'elton heel 447 revs. per minute.
Water used per minute 168 cular feet,
Power of the Pelton wheel
Total electromotive force of the dynamos 1,170 volts.
Total current of the dynamos 30 amperes.
Total electrical output
Less of power transmitted through two miles of line
The cost of the cuttre installation was :-
Dielge. Later
Race and name
Intake, pres and valves 600
Electrical plats - 2,500
Carrage of material to the site of the works 500
Total
The cost of working the machinery with three shifts of eight hours each, as obtained from the results of three years' work, has been:—

	Per week.
Wages, including dredgemaster and electrician. Renewals, maintenance, oils, brushes, etc.	- · · · · · · £25
Management, office, rates and taxes	· · · · <u> </u>
Tetal cost	435

Notes on Modern Steel Works Machinery.*

By Mr. JAMES RILEY, Glasgow.

Amongst the many results of the introduction of mild steel into engineering work may be mentioned the development of the various mechanical appliances used in the process of manufacture of that metal into the finished forms of sectional bars, plates, Rc. As engineers have become better acquainted with its many excellent quadities, and have realized the possibilities opened up by its use, their demands on manufacturers have steadily increased for plates and hars of greater area, strength and weight. Conversely, manufacturers have stimulated these demands by costly outlay on improved machinery, designed to deal with masses and weights which but a few years ago would have been looked upon as unattainable. This continuous emulation has resulted in the massive installations of machinery to be found in the most modern steel

ago would have been looked upon as unattainable. This continuous emulation has resulted in the massive installations of machinery to be found in the most modern steel works.

Rolling-mill Engines.—The improvements or modifications which have been made of late in rolling-mill engines have been in the direction of largely increased strength and power, and of careful attention to the designing of details, these latter perhaps small in themselves, but in the aggregate having an important bearing on the economical working of the engines, and on the diminution of the cost of maintenance. In these days of keen competition, when rigid economy is essential in order to reduce costs to a minimum, it is important that the consumption of steam should be reduced to the lowest possible; hence for pull-over or non-reversing mills compound condensing engines have been introduced with automatic valve-gear, which are working with a consumption of not more than 3 lb. of fuel per indicated horse-power per hour, in place of the old wasteful engines which consumed from two to even four times that quantity. With reversing-mill engines also attention has been turned to the economizing of steam, and trials have been made with compound engines. Compound reversing engines have not proved economical, when applied to mills- such as cogging or roughing mills—where the pieces being rolled are of short length and necessitate frequent reversals; while their use has been accompanied with troubles and difficulties in other directions, which have more than counterbalanced the small economies possible. Where water is available in sufficient quantity, it has been utilized in condensers, connected either with single engines or with several engines from which the exhaust steam is led to the condensers at a central station. The use of central condensing stations for a number of engines appears to have received more attention on the continent than in this country: it is stated that recently this plan has been adopted there in several instances, and with

Cogging-mill.—In the earlier days steel slats to be rolled into plates were made from ingots under the hammer. Labor difficulties and possible economies led the author early in 1884 to put down at Blochairn Works the first cogging-mill used for this purpose. Recent slab-cogging mills are in all essential features like that pioneer mill, but are much larger and stronger, and therefore are capable of dealing with heavier ingots, yielding much larger and heavier slabs. Modifications have also been made in the machinery for tilting up the ingots and slabs for alternate edge and flat rolling.

mill, but ar much larger and stronger, and therefore are capable of dealing with heavier inpots, yielding much larger and heavier slales. Modifications have also been made in the machinery for tilting up the ingots and slabs for alternate edge and flat rolling.

A good example of a slab-cogging-mill was made recently by Messis. Lamberton & Co., for the Wishaw Steelworks. The rolls of that mill are S feet 6 inches long and 40 inches diameter, and at both ends have grooves in which slabs 54 inches wide can be rolled on edge. The housings for both rolls and pinions are massive, and well fitted for their work. The pinions of cast steel are 48 inches in diameter, and have helical teeth 36 inches long, with shrouds or flanges at the ends. The spinioles are of steel; the upper has spherical ends, and is supported from the pinion housing at one end and from the top-roll chock at the other. The mill is fitted with screwing-down gear, driven through gearing by a pair of steam-engines; and an indicator is fitted toguide the screwer. Live rolls of steel are fitted lack and front of the rolls, and are driven by a steam-engine with cylinders 9 inches d'ameter by 35 inches stroke through gearing in the ratio of three to one. In front of the mill is a set of tilting machinery. The turning levers are placed on movable carriages, which traverse to and fro across-the front of the rolls as required, being actuated by hydraulic power. Thus the ingot rolls loan not only be urned from flat to edge or rice verse, but can also be traversed from one end of the rolls to the other. The cradile for receiving the ingot and lowering it upon the feed rollers is of massive character, being designed to deal with ingots up to 10 tons in weight. It is controlled by hydraulic power acting through a ran, which carties a slading block taking on 10 the pin of a crank fitted on the asle of the cradile. The mill is driven by a pair of massive engines having cylinders 46 inches diameter by 60 inches stroke, and gearing in the ratio of one and three-quar

^{*} Abstract of a paper read before the Invitation of Mechanical Engineers, Glasgow, July 30, '95.