this is not correct because the maximum moment produced

by each load does not occur at the

same point. The

mo-

maximum

trapezoid, and the other a triangle similar to that on first panel.

Let these loads be P_2 and P_2' . The moment will then be the sum of the two moments produced by these loads. Theoretically

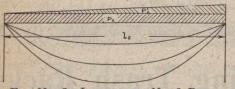


FIG. NO. 2-LOADING ON NO. 2 PANEL

ment due to load P_2 occurs at the middle, while that due to load P_2' occurs 0.5774l₂ from the upper support, or 0.0774l₂ from the middle. Therefore the moment at the middle for load P_2' will be somewhat less, and the sum of the moments at the middle will be somewhat less, than that given in equation (9). For simplicity, however, we will assume the bending moment to be the sum of the two moments, as the difference is but small and the error gives us a safer result.

in which

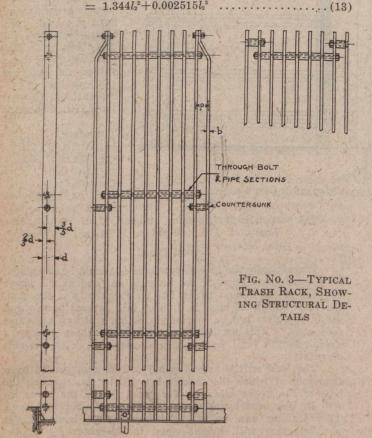
sa.

$$P_2 = 0.434 h_1 l_2 p/12,$$

and
$$P_{a'} = \frac{1}{2} \left[(0.434h_1/12) + (0.434h_2/12) \right] l_{a'}$$

n which
$$h_2 = h_1 + l_2 \cos \alpha = 117.4 + l_2 \cos \alpha$$

Substituting the values of
$$h_1$$
 and h_2 , we get


 $P_2' =$

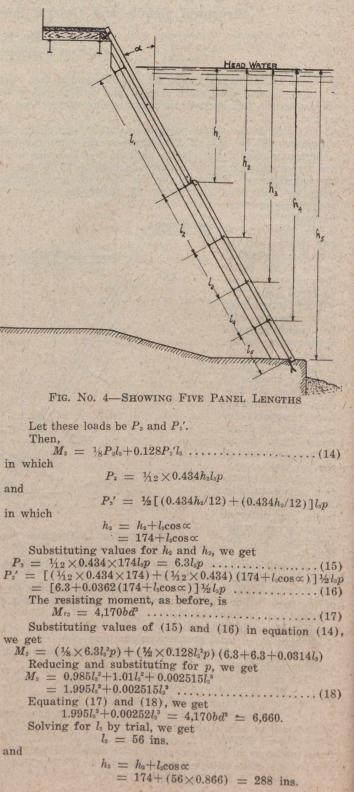
 $[(\frac{1}{12} \times 0.434 \times 117.4) + (\frac{1}{12} \times 0.434) (117.4 + l_2 \cos \alpha)] \frac{1}{2} l_2 p$ The resisting moment as before is

 $M_{r_2} = 4,170bd^2 \ldots (12)$ Substituting the values of (10) and (11) in equation (9), we get

$$M_{2} = (\frac{1}{2} \times 4.25 l_{2}^{2} p) + (\frac{1}{2} \times 0.128 l_{2}^{2} p) [4.25 + 0.0362 (117.4 + l_{2} \cos \alpha)]$$

Reducing and substituting for p and $\cos \alpha$, we get
$$M_{2} = 0.664 l_{2}^{2} + 0.08 l_{2}^{2} (4.25 + 4.25 + 0.0314 l_{2})$$

$$= 0.664l_2^2 + 0.68l_2^2 + 0.002515l_2^3 \\ - 1.344l_2^2 + 0.002515l_3^3$$


Equating (12) and (13), we get	
$1.344l_2^2 + 0.002515l_2^3 = 4,170bd^2 = 6,6$	60 (13a)
Solving for l_2 by trial, we get	
$l_2 = 67$ ins.	

and

$$h_2 = h_1 + l_2 \cos \infty$$

= 117.4+(67×0.866)
= 174 ins.

Third Panel

The load on the third panel, or l_2 , will be represented by a trapezoid, as in the second panel, with the short leg equal to the long leg of the trapezoid on second panel, and the long leg increased by the increment due to the additional head. This loading can likewise be divided into two loads, as in the case of the second panel.

