YOUNG: Forms, Necessary and Sufficient, of the Roots of

the primitive 2^d root of unity. According to our usual notation, let P_z , ϕ_z , etc., be what P_1 , ϕ_1 , etc., become when w is changed into w^s , z being any integer. Then, from (104), $R_z = A_z^n (P_{zm}^m \phi_{zr}^\sigma \psi_{zr}^\tau \dots F_{z\theta}^\theta)$ (108)

Then, from (104), $R_{z} = A_{z}^{n} \left(P_{zm}^{m} \phi_{z\sigma}^{\sigma} \psi_{z\tau}^{\tau} \dots F_{z\beta}^{\beta} \right)^{\frac{1}{n}}$ Therefore $R_{z}^{\frac{1}{n}} = w' A_{z} \left(P_{zm}^{m} \phi_{z\sigma}^{\sigma} \psi_{z\tau}^{\tau} \dots F_{z\beta}^{\beta} \right)^{\frac{1}{n}}$ (108)

w' being an n^{th} root of unity. The general primitive n^{th} root of unity being w^e , give w' in the second of equations (108) the value unity for every value of z included under e. Then

$$R_e^{\frac{1}{n}} = A_e \left(P_{em}^m \phi_{e\sigma}^\sigma \psi_{e\tau}^\tau \dots F_{e\theta}^{\theta} \right)^{\frac{1}{n}}.$$
 (109)

Taking any number y distinct from n in the series (107), since y is a factor of n, let yv = n. Then w^{v} is a primitive y^{th} root of unity. Hence, since w^{e} is the general primitive n^{th} root of unity, all the primitive y^{th} roots of unity are included in w^{ev} . If w' in the second of equations (108) be w^{a} when z = v, give w' the value w^{ea} when z = ev. Then

$$R_{ev}^{\frac{1}{n}} = w^{ea} A_{ev} \left(P_{evm}^{m} \phi_{ev\sigma}^{\sigma} \dots F_{er\beta}^{\beta} \right)^{\frac{1}{n}}.$$
 (110)

The expression P_m having the form of the fundamental element of the root of a pure uni-serial Abelian quartic, it is understood that, in (110), $P_{eem}^{\frac{m}{n}}$ or $P_{eem}^{\frac{1}{i}}$ is taken with the value which it has in the root

$$P_{0}^{1} + P_{m}^{1} + P_{2m}^{1} + P_{3m}^{1}$$

of a pure uni-serial Abelian quartic; and consequently, when v is a multiple of 2, w^{ma} must have the value unity. Form equations similar to (110) for the remaining terms in (107). In this way, because the series of the n^{th} roots of unity dis.inct from unity is made up of the primitive n^{th} roots of unity, and the primitive y^{th} roots of unity, and so on, all the terms 1, 2, ..., n-1 will be found in the groups of numbers represented by the subscripts e, ev, etc., when multiples of n are rejected. Consequently, in determining $R_e^{\frac{1}{n}}$, $R_{ev}^{\frac{1}{n}}$, etc., as in (109), (110), etc., we have determined all the terms

$$R_{1}^{\frac{1}{n}}, R_{2}^{\frac{1}{n}}, \ldots, R_{n-1}^{\frac{1}{n}}.$$
 (111)

Substitute, then, in (105) the rational value of $R_0^{\frac{1}{n}}$, and the terms in (111) as these are determined by the equations (109), (110), etc., and the root is constructed; that is, the expression (105) is the root of a pure uni-serial Abelian equation of the n^{th} degree, provided always that the equation of the n^{th} degree, of which it is the root, is irreducible.

264