Table 2-8 In	nvestigations	ο£	$so_2 -$	Iron -	02	Aqueous	Systems
--------------	---------------	----	----------	--------	----	---------	---------

Investigators	Type of System (Comment
Reinders and Vles (1925)	Bulk	2
Basset and Parker (1931)	Bulk	2
Higgins and Marshall (1957)	Bulk	2
Johnstone and Coughanowr (1958)	Supported drople	t 1
Junge and Ryan (1958)	Bubbler	1,2
Neytzell-de Wilde and Taverner (1958)	Bulk	2
Johnstone and Moll (1960)	Free droplets	2
Danilczuk and Swinarski (1961)	Bulk	2
Karraker (1963)	Bulk	3
Bracewell and Gall (1967)	Bubbler	1
Brimblecombe and Spedding (1974a)	Bubbler	1
Brimblecombe and Spedding (1974b)	Not reported	4
Freiberg (1974)	Theoretical	
Lunak and Veprek-Siska (1975)	Flow	- 5
Barrie and Georgii (1976)	Supported drople	t 1
Fuzzi (1978)	Bulk	

- 1. Incompletely characterized 2-phase system; results cannot be considered to be reliable.
- 2. Rate expression not reported.
- O₂ -free system; results not applicable to tropospheric SO₂ oxidation.
- 4. Insufficient details reported to determine if the results should be considered to be reliable.
- 5. Photochemical initiation.

TABLE 2-9. Rate Expression for the Iron-Catalyzed Oxidation

Expression	<u>a,b</u>	Нq	Investigators
d[SO ₄ ²⁻]	= 0.04 [Fe(III)][S(IV)][H ⁺] _o -1	~ 2	Adapted from Neytzell-de Wilde and Taverner (1958)
d[SO ₄ ²⁻]	= 100 [Fe(III)][S(IV)]	4	Brimblecombe and Spedding (1974a)
d [SO ₄ ²⁻]	= 0.1 [Fe(III)][S(IV)][H ⁺] _o -1	<u><</u> 4	Adapted from Fuzzi (1978)

aThe units are: liter, mole, second.

bThe term [H+] o indicates that the rate is dependent on the inverse of the initial H+ ion concentration; changes in H+ concentration after the reaction is in progress do not affect the rate.