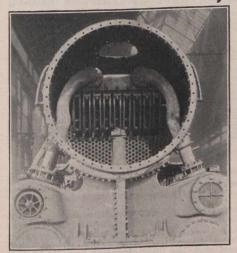

SEPTEMBER, 1912.]

time its axis exactly coincides with the longitudinal axis of the cylinder. It also provides ample wearing surface to insure long service without requiring adjust-The general construction of this ments. device is shown in one of the accompany-ing illustrations. The guide is so constructed that it is bored out and faced off at one setting on the machine. Its cir-cular face registers with a corresponding face on the front cylinder head and the surface of the guide is struck from the centre of the cylinder. The shoe fitted to the extension of the piston rod has a ra-dial bearing on the guide. Consequently, any refinement in adjustment between the piston rod shoe and the main cross


A. design. This arrangement employs a top-header and superheater pipes of the double loop construction. It is arranged to give a high degree of superheat and provides a superheating surface of 279.6 sq. ft. Because of the use of superheated steam, a low boiler pressure of 170 bs. is employed. The boiler, however, is de-signed to stand a pressure of 200 bs. The

brick arch is supported on studs. Following are the principal dimensions of the locomotives:-

C.N.R. Locomotive.

head is unnecessary because, while the latter works in a flat guide, the former will swing around on the centre of the will swing around on the centre of the cylinder so that it will always take a fair bearing without cramping. The guide casing is open at the top, with a corres-ponding opening in the flange; so that the guide can be easily removed, if the engine is on the forward centre, without taking down the pilot and bumper. It is provided with a dust tight top and cover and with oil stops; so that the shoe al-ways runs in oil. Experience with this device covaring nearly two years on a device, covering nearly two years on a large railway in the northwest of the

C.N.R. Locomotive. Arrangement of Outside Steam Pipes.

United States, indicates that the wear on United States, indicates that the wear on the shoe and guides in two or three years will not exceed 1-16 in. This obviates the necessity of relining between general shoppings. In view of the general use of extended piston rods on superheater locomotives, this device represents an im-nortant improvement in locomotive con portant improvement in locomotive construction.

In the boiler construction, the principal features of interest are the superheater and the brick arch. The superheater is the Locomotive Superheater Co.'s type

Piston Crosshead Guide.

riebox, depen (top of grate to cen. lowest tube)
Tubes, material
Tubes, thickness no. 11 B.W.G.
Tubes, number of 133
Tubes, diameter 2 in.
Tubes, length 13 ft. 21/4 in.
Flues, material Kewa seamless steel
Flues, number of 18
Flues, diameter of 53% in.
Flues, spacing of 61/4 in. and 65/8 in.
Heating surface, tubes, 1,241 sq. ft.
Heating surface, firebox 141 sq. ft.
Heating surface, total
fleating surface, total
Superheating surface (on basis of inside diar

G. G. Hare, Assistant Engineer, Do-minion Atlantic Ry., Kentville, N.S., writes:—"1 enclose renewal order for my subscription to Canadian and Marine World. Please forward me the July and August numbers, which I have not re-ceived, owing to my removal here from Kingston, Ont., so that my file of your valuable publication may be complete."

Removing and Repacing a Wrecked Timber Truss Span on the C.N.R.

The clearing of a wrecked timber truss span and erection of a temporary structure, restoring traffic, was accomplished in three days on the Canadian Northern Ry at Saskatoon, Sask., where a derailed car demolished the north shore span of the bridge over the South Saskatchewan River. This bridge consists of six 150 ft. River. This bridge consists of six 150 ft. through Howe truss spans of timber on concrete piers, the rail elevation being about 45 ft. above the surface of the water. The bridge was of Pacific Coast fir in first class condition. It was built shout six years ago about six years ago. As one of the southbound through pas-

As one of the southbound through pas-senger trains, carrying several sleeping cars on its rear end, was pulling through the south end of the yard at the ap-proach to the bridge on March 4, the rear truck of the last sleeper left the rails at a switch about 500 ft. north of the bridge. The truck slewed and led off on the switch to the west or right the bridge. The truck slewed and led off on the switch to the west or right hand side until the wheels that should have been on the left hand rail were over a foot outside the right hand rail and beyond the guard timber. There was a 30 ft. approach trestle, but the wheels were hanging over the ends of the ties when this was reached, so the guard rails could have no effect. The guard rails could have no effect. The sleeper was dragged in this position on to the bridge, sideswiping the truss and breaking or knocking out the posts and diagonals. This span collapsed com-pletely, falling with the last car to the river bed below, which was almost dry and frozen to the bottom. The damage to the bridge did not extend beyond the first pier and the car preceding the one which wrecked the truss remained on the structure, having its rear badly on the structure, having its rear badly damaged, however. Fifteen passengers were in the rear sleeper, and 12 were in-jured, but none fatally. A fire started in the wreckage, but was quickly put out by the city forces.

The werckage of the truss and the car was cleared away with the aid of a Lidgerwood ballast unloader, which dragged it sideways off the bridge site. A track which runs west along the river bank at which runs west along the river bank at right angles to the bridge was utilized for this purpose, the Lidgerwood car be-ing set at the point marked A on the photograph of the reconstruction. The cable was then run down to the wreckage, dragging the tangled mass of rods and timber and the wrecked sleeper out of the way.

out of the way.

Reconstruction was started by first erecting a temporary trestle over which traffic could be opened. Bents were framed on the ice and raised by a wrecking crane working outward from the shore end, blocking being put under the bents. On account of the end of the secbents. On account of the end of the sec-ond sleeper overhanging the adjacent span, it was necessary to build entirely from the shore, so that the crane could be used to lift the overhanging car. The last two bents next to the pier were framed at the side of the bridge, then lifted clear and swung into place. When

framed at the side of the bridge, then lifted clear and swung into place. When all but one panel of the trestle was decked, the crane lifted the end of the hanging car and pushed it forward on the undamaged part of the bridge. With traffic thus restored, work was continued on the erection of the per-manent Howe truss span, utilizing the trestle for falsework. Additional posts were placed vertically on the end of each sill to carry the weight of the new span. span.

The nature of this accident was such that it was believed to be unpreventable by the guard rails, and it is also believed that a steel structure would have suffered similarly.

The clearing of wreckage and re-erec-tion of the span was done under the dir-ection of J. A. Crawford, Bridge and Building Master, C.N.R. at Saskatoon.