All the above are for three-phase 100% P.F. on basis of watts lost. These formula are therefore applicable to practical cases, when miles, kilowatts, and kilo volts are used.

The various symbols used have the following meanings:

l = Weight per mile of one of the three conductors used,

or = weight per mile per phase.

M =Length of line (one way) in miles.

K = K ilowatts delivered at receiver end of line.

P = Per cent. loss of power K in line.

 $\epsilon = Delta$ line voltage at receiver end $\div 1000 = kilo$ volts.

Z = A constant = 1080 for three-phase 100% p.f.

A = A constant = 9.06 for three-phase all power factors.

W = Total weight of copper in all conductors.

L = Pounds of copper per kilowatt delivered = $W \div K$.

C. M. =Circular mils area of copper in each phase.

On the basis of watts loss being fixed, the constant Z being equal to 1080 for unity power factor, its value for lower power factors will increase inversely as the square of the power factor

 $\left(\text{since the copper for watts loss fixed increases as} \frac{1}{\left(\text{power factor} \right)^2} \right)$

therefore the values for the five equations for various power factors are as shown below:

No.	Equation	For power factors of			of
		100%	90%	80%	70%
1. ($C.M. = \frac{M}{P} \frac{K}{\varepsilon^2} \mathbf{x}$	5854	7200	9140	11950
2.	$W = \left(\frac{M}{\varepsilon}\right)^2 \mathbf{x} \frac{K}{P} \mathbf{x}$	280	344	437	571
3.	$L = \left(\frac{M}{\varepsilon}\right)^2 \mathbf{x} \cdot \frac{1}{P} \cdot \mathbf{x}$	280	344	437	571
4.	$l = \frac{M}{\varepsilon^2} \mathbf{x} \cdot \frac{K}{P} \mathbf{x}$	93	114	145	190
5.	$3l = L \ge \frac{K}{M}$	_	_	-	_

On the basis of volts loss being fixed, the value of Z will increase inversely as the power factor (since the copper for volts loss fixed increases as $\frac{1}{power factor}$). Therefore the values of the

five follo

> I etc. of *I* to t

> > L f

for

perc

1

be me Va cho and 5 t

kile

we

plo