Cmanatera of Ground.	Giemit Bmitas.	Inda.	Switzer. land.
	Fuot.	Foot.	Foot.
Nearly level, very favorable circuta. stances of weuther.	02330	.0142	. 0125
Slightly nodulating, gralients not exceenl. ing 1 in 100 .	.0238	. 0168	. 0148
Gralients between 1 in 100 and 1 in 20.	.0379	. 0208	. 0183
Gradients between 1 in 20 and 1 in 10.	.05196	.0350	. 0308
Gradienta steeper than 1 in 20.			. 0416

Nore.-The quantities in bold fince type nre estinated from analogy utlorded by Swiss levelling, as no direct data could be furnished.

In illustration of the high degree ol accuracy attained over long lines, the following is taken from the repart of the levelling operations in Iudia for 1866, by Colonel Walker:-

Secrion.	Lexgrin is Miles.	Maximing Divergence: of two Observens.	Teirminal Divergence.
		Foot.	Foot.
Caleutta to Tillingarhi.	242	0.20	0.15
Tillingarhi to Patka Gerouli,	346	0.10	0.38
Agra to Patka Gerouli.	342	0.15	$0.0 . i$

Some exeellent results over duplieated lines have in recent years, been obtained with the Wye levels used in the engineering braneh U. S. A. The methods adopted were practieally those of preeision leveiling. As an example of these I extract the following :-

Section.	Laxgtil in Mines.	Max. Miventience of rwo obsebvers is feet.	Termival. Drembexen is Feet.
Stous City to Fort Randal	179	. 0×2	. 060
Fort Ramlatl to Pierre, Dak.	190	. 15	.15.4

The best livelling has however undoubtedly been done in Switzerland. The fivd rules there alopted are as follows:-

1. The leveling to he exented ly equal rights whenever pasible ; the diflerdice hetwen the length of batek and fore sixhta never to exced ten metres.
2. The length of wight is as a rule to be limited as under:-
(1) Upon railroals with gradients 1 in 100 , to 100 metres.
(b) " " " steep gralient 50 , to 100 matre-
(c) ". highroads in the phins 30, to bif metres,
(d) " monntain rosels 10 , to 2 i) metres.
3. The pint level to he ahways shated from the am.
f. The three instrmental errors, viz: Collimation of optialanis, mequatity of pivots, and boblle error to be determined at lease onee each day.
b. The tield work to be carried on continumaly except on wet or windy days. Three kilometres at least shombld the tength or lime levelled per day along ruilway and two along highways.
4. Bencla marks to be ande at every kilometre, and to be clearly described in the field trook.
In preparing this paper I have comleavoured to toueh upon all classes of engineering levelting, naturally however the sulyeet being one which bears more partienarly ongeodesie work, I have givengreater attention th that department. In deprecalion ol'a passible eritieiste to the dibee that the mijor portion of the methods heruin detailel are of no consequence to "practical" Ensincers, I would beg to remind any so disposed that possibiy their partientar line of work hat not ambraced the whole sphere of labours af the profession. I would also wish to express the lupe that the members of the Camalian Sueiety of Civil Engineers may at some day mol liar distant be called to do geodexic levelling within the boundaries of their own counery.
