W. L. Argo

The experimental values $\begin{pmatrix} d\rho \\ dp \end{pmatrix}_{exp.}$ agree very closely with those for $\begin{pmatrix} d\rho \\ dp \end{pmatrix}_A$, the greatest deviation being 2.8 percent and the least 0.9 percent. On the other hand, the experimental values differ from $\begin{pmatrix} d\rho \\ dp \end{pmatrix}_B$ by from 8.5 percent to 7.5 percent.

The Effect of Errors in Data

The following table shows the percent effect on the values at the heads of the columns caused by a one percent increase in the data shown in the first column:

	$\begin{pmatrix} d\rho \\ dp \end{pmatrix}_{\mathbf{A}}$	$\left(\frac{d\rho}{dp}\right)_{\rm B}$	$ \begin{pmatrix} d\rho \\ dp \end{pmatrix}_{exp.} $
λι	0	0	+2
λ	о	О	2
α	+1.04 to +0.96	+1.15 to $+1.17$	0
Cv	+0.013 to +0.010	+0.15 to +0.17	0
-h	+0.05 to +0.09	0	0

Thus, to bring the values $\left(\frac{d\rho}{dp}\right)_{exp.}$ down to the values $\left(\frac{d\rho}{dp}\right)_{p}$ there would have to be consistent errors of about

+4 percent in λ , or -4 percent in λ_1 (or +2 percent in λ and -2 percent in λ_1). Chance errors in the measurement of wave length are much less than this (see values, page 449), and it is quite improbable that methodical errors would have opposite signs in λ and λ_1 .

To bring the values $\left(\frac{d\rho}{dp}\right)_{\rm B}$ up to the value $\left(\frac{d\rho}{dp}\right)_{\rm exp.}$ an error of about +7 percent would be necessary in *d*, or an error of about +50 percent in c_v . Errors of these magnitudes are practically impossible in *d*, and very unlikely even in the case of the doubtful c_v .

444