light green, bluish green, and after a long time red, through absorption of O and formation of ferric oxyhydrate. (b). Ferric Salts form no carbonate.

(71. H₂S. in alkaline solution, throws down in every case FeS as a black precip.

The Cupric Salts are easily distinguishable:

- (11. H₂S in acidified Solution gives a black precipitate CuS.
- (2). NH 4 S the same prec. insoluble in excess.
- (3). KOH gives a bright blue precipitate Cu(OH)₂ which, upon the application of heat, becomes black,

$$(Cu(OH)_2 = CuO + H_2O).$$

- (4). K₄FeCy₆ (Potassium Ferrocyanide) gives a reddish brown precipitate Cu₂FeCg₆
- (5). Na₃AsO₃ (Trisodic Arsenite) forms a green precipitate, with a Cupric Salt=CuH AsO₃, known as Scheeles green, if solution be cautiously neutralized with an Alkali.
- (6). NH₄ (O forms a blue precipitate Cu
 H (HO)₂ which is readily soluble
 in excess of reagent, forming a deep blue
 liquid (NH₂Cu (SO₄)
 NH₄ (

7. Na_2CO_3 gives a green precipitate and is a basic Salt $CuCO_3 + Cu(OH)_2$

Cuprous Salts are not stable, taking up Oxygen from the air and forming the corresponding Cupric Salts.

Cu₂Cl₂ has the property of absorbing large quantities of Carbonic Oxide gas.

The Mercuric Salts corresponding to Mercuric Oxide HgO or Mercuric Sulphide may be distinguished by the following tests:

- (1) NH₄HO gives a white precipitate, $HgCl_2+2NH_4HO=NH_2HgCl+NH_4Cl+2H_2O(Hg(NO_3)_2=NH_2HgNO_3)$
- (2) KI gives a red precipitate, 2 KI + HgCl₂ = HgI₂ + 2 KCl.
- (3). KOH, gives a yellow precipitate, HgCl₂ + 2(KOH) = Hg (OH)₂ + 2 KCl, but the Hg (OH)₂ only exists for a moment, splitting up into H₂O and HgO.

- (4). IICl gives no precipitate!!!
- (5), A Mercurous Salt in acid solution gives with H₂ S in the beginning a white precipitate = HgCl₂ + HgS, a double combination, on the addition of more H₂ S black HgS is precipitated.

The Mercurous Salts corresponding to Mercurous Oxide Hg₂ O or Sulphide Hg₂ S, may be thus distinguished:—

- (1). NH HO, gives { NH Hg Cl NH Hg NO 3 }
 - (2). KI, gives HgI, a green precipitate.
- (3). KOH, gives Hg_2 (HO)₂ = $Hg_2O + H_2O$, a black precipitate.
- (4). HCl, gives Hg₂ Cl₂ a white precipitate.
- (5). When H₂S is added to an acidified solution of a Mercurous Salt, a black precipitate immediately falls.
- Q.—8. How much KClO₃ is required to furnish enough Oxygen which, when brought into contact with sufficient Nitrogen Dioxide, will form 33 litres of Nitrogen Tetroxide, measured at —1°C and 780 m.m. pressure?
- 33 litres NO₂ at —1°C, and 780 m. m. pressure, become $(33 \times \frac{273}{272} \times \frac{78}{76})$ litres at O°C and 76 m.m. pressure. But 11.2. litres of NO₂ at O°C and 760 m. m. weigh 23 grammes, $\therefore (33 \times \frac{273}{272} \times \frac{78}{76} \times \frac{10}{112} \times \frac{23}{1})$ grammes = 69.8. grammes = weight of required Nitrogen Tetroxide.

NO + O = NO₂
hence every 46 parts of NO₂ require 16
parts Oxygen, ... 69.8 grammes NO₂ require
69.8×16

= 24.27 grammes of Oxygen.

2KCLO₃ = 2KCL + 3O₂ hence, 245 parts KCLO₃ yield 96 parts of Oxygen, ∴ 24.27 grammes of Oxygen require 24.27×245

= 61.93 grammes of Potanic Chlorate.

Q.—9. (a). How would you separate Calcium, Barium and Magnesium in solution, (b) What decomposition do Silver Chloride