competition, and had filled the position of expert. He would be peffectly aware that his honesty and honorable dealing would be looked upon as questionabic, no matter how honoralle or honest his intentions may have been
To secure the success of a competition a building commiltee should make the terms such as would induce thenselves to enter the compettion if they were arehitects. It is always possible to have competitors, but it is not always possible to get good men to compete. If there is any object in a competition, it is certainly to obtain the best possible design, and how that is to be obtained through a competition of second and third-rate men, we cannot understand. There is a mode of holding a compctition whech has resulted very satisfactorily in many cases, and that is to choose several good men in send in competitive designs, paying a stated amount to each, and allowing other designs to be submitted without any remuneration to the competitors. In this style of competition, the decision by a capable expert is just as necessary as in any other form. No man will risk his reputation, except where he believes that he vill only be placed second to another because that is his proper position. There is nothing more galling to a man thin to know that he has submitted the best design, and yet another has received the prize because of the incapacity and ignorance of the deciding authority.

At the regular meeting of the Architectural Draughtsmen's Association to be held on Tuesday evening the 2oth inst., Mir. R. J. Hovenden will offer some remarks on the subject of "Painting." At the succeeding meeting on the 27th inst, the subject of "Sketching in Design" will be considered.
"Constans Fides" writes: 1 would advise students of irchutecture to study the following works: "William Chambers' Civil Architecture," 2 vols., by Joseph Gwilt; "Thomas Rick. man's Gothic Ar. chitecture of Eng. land,"1 vol.; "Fer. cuson's Illustrated Hand Book of Ar. chitecture," 3 vols.; "Donaldson'sSpec. ifications and Law of Contracts," 2 vols. ; R. J. Hat. field's "Transverse Strains," 1 vol.; "Encyclopedia of Architeciure," 2 Architeciure, ${ }^{2}$
vols. ; "Practical vols. ; "Practical
Mason," 1 vol. ; "Brown's Domestic Architecture," I vol.

Basswood may be enormously compressed, nfier which it may be Easswoou may be enormously compressed, niter which it may be
sleamed and expanded to its original volume. Advantage has been taken of thits principice in the manafacture of certain kinds of mold. ings. Thie portions of the wood to be left in relief are first comings. The portions of the wood to be lef in relief are first compressed or pushed down by suituble dies below the general level of
the board, then the bonsd is planed down to a lovel surface, and afterward steamed. The compressed portions of the board are afterward steamed. The compressed portions of the
The Laborers Convention, consisting of representatives Irom Thorold. Merritton and St. Cathnrines, and the Bullders' Laborer

Unlon, lias ariopted the following senle of wages:-Builders taborers. 15 K cents per hour, nine hours to consiltute a days work, piek and shovel meen, is celuls per hour; cordoralion laborern. piek and shovel mien,
$\$ 1,25$ for a ajne-hour day.

THE BRIDGE AT POUGHKBEPSIE.

N^{0} iver m Amperien is cmossed by so many persons and so many tons of freight as the Hudson, and all pass by some means of water carringe if the passage is made below Albany. A glanee at the map shows that from the coal and jrom fields to the milis and shops of New England, for the greater part, a straigh tiae witl cross the Hudsen far below Albany, and as a consequence all mill communication between these points requires a long detour A stmight line from Boston to Pitisburg traverses Massnchusett and Conneciicul and ilve coall and iron fields of Pemssylvania, ant crosses the Hudson at or close to Poughkeepsic, the same line pro longed passes near to Cincinnati, Loutisvilie and St. Louls. With the exception of a short section west of Poughkeepsie. this line is iraversed by existing rallrosds.
The idea of bridging the Hudson has been entertalned for along time, but the possisility of enecting a bridge which would no intertere with navigation is of recent date and the opposition of those who are interested in whter carriage hos been sufficient to defeal all projects which contemplated bridgtig the river near the water level.
Advances in the art of engineering have been very great during the past fow years, and constructions are now ensy which have ween beyond the mage of possibility; much of this is due to the invention of the cantilever.
The charter of the Poughkeepsic Bridge Compamy was granted by the State of New York in 187 x , but the death of the principal subscriber to the slock, and the panic of $\mathbf{2 8 7 3}$ bropght the work to a stop after the expenditure of about $\$ 1,000,000$ in prelimitary work and the accumulation of material,
The bridge is nccurately shown in the engraving and will be one of the mostextensive and magnofficent suructures of is kind in the
cluding the end walls) each 2 ft. thick also, and suating just above the oak shoe. There were 14 clear operings each taxia f . used for dredging pockets ihrough which all the material was removed by the clam-shell dredge as the crib was sunk by the weight in the centril and sude pockets. The iaxiz in. umbers were so laid that the longitudinaland cross coarses allernated fa direciion, and the spaces belween in each case were closed with fillers of the same timbers. AN halviag or joinaling of sticks was thus avoided and the entire mass was thoroughly ded in each direetion, wth solid wall from bontom to top. Each course was fastened to the one below hy round I in. drift-bolts, 20 in . long, with 425 bolts to each (lul) cemuse.
The netual sinking of the eribs to hard bottom was accomplished by drediging, under the usual conditions of such work, the cribs

hanging for a time and then descending with a drop of some feet at a jurnp, setting more or less out or level in either direction. Mr , O'Rourke, we understond, introduced some very practical modificetions in the dredging pmetuce which resulted is the belter maintemance of the kerel of the erith in siaking. When hard bottom was at lost reached the dredging pockets were filled with concrete deposited under water by boxes holaing one cuble yarm each and opened at the botlonn by a lateh and trip line. The con crete was made alongside the crib on a float especially fitted This fout carried a raised mixing platform with the concrete mixer set beneath ; eranes on this float handled the boxes and deposited the conerete nit a maximum reto of 300 cu , yards per day, whith is an nimost unequalied rate of progress. It should be remarked that before thisconcreting the weighting pockets had been solidily floored over with twelve inch timbers and the concrete was levelled off whili them by the sid of divers.

A floating caisson surmounts the crib and cartics the mosonry on its six. 100 deek. The botion feet deep, made of feet deep, made of
tweive inch timbers tweive inch timbers gaid in three iwo too steps or courses. The sidesare double inyers of two inch plank. calked on the outride. with the angle pitehed, covered with canvossand battened.
Holding-down bolts and cross-girders per milted the sides 10 be removed as soon as the masonry was above the water suffi cienily, The caisson was towed out over the crib and the masonry started,
world. It will consist of five spans over the Ilver channel, three of them ciatilevers 550 feet eneh, and two truss spans of sas feet cach. The material is steel, and will be supported on tall steel towers resing upon stone piers 25×87 feet on top.
The bridge is to have two tmeks and be of sufficient strength to support two tralus ench deawn by 8 g tom locomotives, and a moring load of 3,050 pounds per lineal foot on each track. The bottom of the truss and the cantilever spans will be 130 and 160 feet respectively, above hith water, and the track will be al2 feet above high water.
Last year the Manhotian Bridge Company was organized and accuired all the inghts of the previous company. This new company made a contract with the Union Bridge Co. for the entire work ol the foundation and superstructure, and on this contreet operations were re-commenoed in September, 1885 . In the new plans now made, the charter requirements of goo fit clear clomanel openingt and a clear height of 130 ft, below bottom chord were of course still adhered to, and the two foundations partly completed wite to be utilized, and the new foundations sunk in similar open cribs. But the plers and superstrueture were entirely changed. For the solid masonry piers of the ald plan metallic towers resting on shone piers, 10 ft . high, were substituled, and the superstructure was changed to two connecting and three candilever spans with the rills zia ft. above high water. The dimensions of these spans were also conirolied somewhat by the change in conditions on the wess bank where the West shon: R. R. now has its treeks.
At the bridge site the river has a depth of water rangling from 501060 n. The general eharacter of the bottom is made up of a fine, soft mud ond clay and sand mixed to a depth of at least 100 C. below high water, whicn a firm, hard sand and gravel stratum was met with, overlying the bed rock, which latter was about 140 ft. below high water mark.
The crib was 69 ft . wide by 190 of long at the bottom ; and for the firm so ft . in height there was a culling edge mrade of solld umbers shod with a $12 x i s$ nech oak stick. All the thanber used in the erib was 12×12 in. hemlock, saving the oak shoe before referred 10. The triangular end portons formed closo pockets 10 be used in slaking the crib through the ruad, atc, and hotdiag tit down against tlotation. Above the cutting edge the wails of the pockets were mude of two thicknesses of tlmber, or 2 ft . wide. The longttudinal walls were-firmly tied together by six cross walls (not in
and when it would only fioat at bigh water (for the tide reaches this point th the iver) it was exactly, located and sunk to a finn beatiog by additional weights.
The piers are very handsome in design, and are built with a foce of dark limestone laid to magneficent courses of 3 feet and upwards in depth and the interior filled with concrete. The surmounting coping is very pleasing in its effect, with just enough toolwork upon it not to detract from the mass and position of the pier.
This completes the general description of the foundations, and we now corre to some of the difficuldics of the work. The first trouble was found at pier 2 Here the old brldge company had completed the foundation, and had built' lis masonry pler to a height of 2o f . above high water, with top dimensions of aax 68 it This was not a sufticient bise for the metallic towers of the Union Bridge Co., which called for dimensions of 25587 ft. and the old mosonry had to be taken down and the pler widened and

kengthened somickow. But the ofd company had had trouble here too, and It eame about In this way: In the old crib the upper ejghl cquises had been calked, and a conler-dam commeneed upon h, and cartied down with the cath undl ita bottom. was 36 ft. unde water. When thls dam was pumped out, the upward puil proved 00 great for the holding power of the comblned bolts and con erete, and the whole mass lified several fiel at the north end

