river taying in kigland.

The English Government is now at work on a problem which is engaging attention in this and in other parts of the world, viz., the devising of some method by which the surplus water from the mountains may reach the sea without the destructive floodings of the low lands, which now follow the rain storms or snow meltings on the highlands. In England, this flooding of low-lying districts has become more destructive during recent years, because the systematic ditching and underdraining of the uplands give quick passage through the soil into the rivers to the surplus water which formerly was long held on the surface or percolated but slowly through the soil. We find but meager information concerning the provisions of the act which is now before Parliament for the averting of floods, and can do but little more than state the fact without description of methods proposed. It may be said, however, that the suhject has been studied by a royal commission and that a scheme has been elaborated from the report of their investigations. The Agricultural Economist thinks that the whole project is endangered by the fact that the proposed act orders that a part of the expense of carrying off the water shall be taxed upon the uplands whence the waters come. This, our exchange thinks, will awaken much opposition to the contemplated improvements. We suppose the uplands will hold that as water is prone to run down hill, it is no fault of the hill, but the iniquity is rather in the water, and if those below do not care to suffer injury they must get out of the way, or else corral the water so that its destructive power is held in check. This it is proposed to do by widening the rivers, and the power to carry out these improvements is to be vested in "River Conservancy Boards," who shall have full authority to condemn adjacent property, mill rights and the like, as their plans may require. One recommendation of the report is, that all arterial strean's insufficient to carry their waters after heavy rains be widened very considerably indeed, and that the new banks be formed gradually shelving down to the banks of the stream, that they may be available to bear grass either for mowing or for feeding of stock, when the waters are low. If this were carried out, the conservancy boards would no doubt let these river banks by the season, the revenne derived from which would lifhten the taxation tor the conservancy rate. Although most of the rivers would require considerable widening, this shel cing bank system might, in a great measure, prevent the waste of land which would take place if ronducted on any other principle.

In addition to preserving the lowlands, it seems that the system of upland reservoirs, for irrigating low land meadows, is also contemplated, and this the Economist regards as a very promising feature. This has also been proposed for our own turbuleit rivers. It is interesting to mote the testimony brought for ward in England in favor of irrigation, and comparing their moist climate with our ard one, we can but say if irrgation will do these things in the green tree, what will it do in the dry? Our exchange says that if "there is one thing we are behind in more than another in our British husbandry, it is in making that exleisive use of water which is made on the continent and in the East l,y processes of irrigation." It then proceeds to read English feed growers the following lesson: "The recommendations of old Arthur Young for laying out fresh water meadows might still be studied to advantage by the owners and occupiers of numerous districts, and as to benefits derivable theretrom, the same writer rerords an instance where nearly five pounds an acre was realized tor the feed of a water meadow during six weeks of spring, and that nearly two tons per acre of hay was reaped from the land atter wards the same summer, which, tegether with the alter-grass in autumn, made a splendid return. Yet when the same meadow could not be irrigated owing to some dispnte respecting the water rights, very little whatever was grown on it."

These propositions to curb rivers from their wild work and harness them lorever in the serviec of the farm, is one of the most interesting and important which is now advanced for agricultural engineers to reduce to practical operation.

The Earth Belonge to China.-Dr. Schliemann has found Chinese vases and gauze linen on Trojan soil, dating 1,200 years before Christ. They were on this coast in the fifth century, and ar. now taking possession of it by right of prior discovery. La-Fing-pao contends that the Hyperboreans were Chinamen, while liere it is claimell that the Lepers are Chinamen.

To Insulate Wike.--She liac varnish makes a good insulatur for wire, provided the wire is wound before the varnish
becomes thorougly dry. becomes thorougly dry.

IMPROVEMESTT IN FIRE RSCAPES.

We recently witnessed from the upper window of the old pootoffice some very successful performance of a new fire-escapp patented by Edward M. Ball, of Stanstead, Quebec, Canadi. ber of persons (one at a time) from a window, roof, or portico
the upper stories of buildings of any height.

It consists, first, in inclosing within a case of iron or other metal a spool (carrying a rope of sufficient strength) connecte
by gearing to a coiled spring, which as the person descends, by gearing to a coiled spring, which as the person descends, be wound up, and thus made to serve to rewind the rope on
spool, in order that another person may take advantage of means thus afforded for escape; second, in a metallic f strap brake, automatically worked by a governor, which to regulate the speed of descent to a sufficiently moderate to prevent injury when reaching the ground.
$A^{\prime} d^{\prime}$ is the case ; B, the cap; C, the spool ; D, the intore mediate double gear-wheel, and E'the spring.
Figure 1 represents a vertical transverse section taken on the line $z z$ of the case; Fig. 2, the cap B, a portion of the spool C, and the governor of a machine embodying the invention. 3 is an interior sectional view, taken on the line $y y$, Fig. 1 , of the cap B and friction-strap m. Fig. 4 is a sectional line $x^{\prime} x^{\prime}$ of Fig. 2.

The case is composed of two parts, A being the cylindricy part, with the vertical ribbed plate surmounted by the eye e, A^{\prime} the back, being a ribbed plate conforming in shape to contour of the spring
plates A d and the cap B serving as a frame, in which the bearings for the machinery within.
The spool ' ' is journaled at one end in the cap B, and at the other in the back A^{\prime} of the case. Nar the left-hand end of th spool-shaft s is mounted and securely fastened thereto a piniont u, which gears with the periphery of the wheel D , the smaft
wheel of which gears with the wheel c, mounted on the shaft wheel of which gears with the wheel c, mounted on the shaft that The coiled spring E is hooked to this shaft in the usual mand
the outer end of the spring being attached to the pin t in the outer end of the
substantial manner.
The spool C may carry any kind of rope; but I prefer to wire-rope composed of very fine wire. The rope should be wound on the said spool in such a manner that when unwinding bot tension of spring E, by means of its connection, w increased to the extent necessary to rewind the rope.

A person being attached to the free end of the rope (whid passes through the case by the opening o at the bottom of cylindrical portion), by means of a belt or other safe contrivanceof the speed of descent is regulated by the governor, composed the parts and operated as follows

The weights $a a^{\prime}$ are rigidly connected by arms $i i$, to the nea $j j^{j}$, respectively, which are pivoted on the pins $h h$, screwed The otherwise secured to the contiguous flange of the spool C. head j carries a pin, k, the said flange carrying a similar one, hal In wardly projecting knobs $l l^{\prime}$ enter a connectiug block, d, ing for its axis the spool-shaft s, thus connecting the weig with the one a^{\prime}, making the centrifugal force of the latter supplement that of the weight a. The centrifugal force a rated by the motion of the spool C separates the weights a a^{\prime}, which, swinging on the pins $h h^{\prime}$, causes the pins g and
approach each uther, and they, being connected to an ordin metallic friction-strap, m, which encircles the inwardly cir portion of the cap B, cau-e the said friction-strap to be dr closely in contact with it, "reating friction, which arrests speed of the spool C and its connections. To counteract the trifugal force of the weights $a a^{\prime}$, and prevent them acting the requisite speed is attained, the spring f is provided. spring is secured to the connecting block d, as shown in Fig. its free end bearing on the head j. The tension or force which the spring so bears determines the tension of the friction strap m, and, consequeutly, the speed of descent, a stiffer causing the revolutions of the spool C to be more rapid.

Location of the Garden of Eden.-Of the four rivers encircled the Garden of Eden in Genesis, the Phrat and dekel have long ago bzen identified as the Euphrates and A cuneiform monument in the British museum has a geographical names, and among them occur Pisan and both cruals of the Euphrates. Pisan was a canal running of the Eaphrates, and in the epoch of Alexander the Great under the name of Pullakopus canal ; it is the Pisan or of the Bible, and Guchan is the Gihon. therefore

