peat ruel.

Thero is littlo doult but that tho manufacture of peat fucl in the Proviace of Quelve is destined, at no distant tine to assume proportions far exceedin; the prescent scale of opera. tions. The deposits ut, immense and in viow of the prebathy continuous increaso in the cost of conl, a ho ue fuel whll certainly attract grentur attention every year. Abuut the middle of last month n number of gentlemen were invited by the President and Directors of the Canada P. at Fuel Company to inspect the works of the Company at St. Hubert, abvut six miles from Longueuil. On the ariival of the party at the bog they were conveyed over a portion of th. ground and embarked on buard a large suow which had been covered in and decorated with evergreens It was slowly towed hrough a cut wade by the pr vious excavation of peat, which is about 0 miles in length and about σ to 6 fect in depth. The barge traversed the extent of the cul to the point where new excavations had been mad.. The works have nuw been in operation for about five years, during which time 25 miles of peat have been taket out. Thereare 250 men at present cermployed on the works at St. Hubert, with three escapators drven by powerful steam engines each cutting about 250 feet per day abouz 6 feet deep. A new and important feature in the drying process has been introductd which cannot fail to be of immense importance to the interests of the Coapany. Hows of lacks have been crected alung the canal in which the peat is placed, and it is thus dricd in one quart:r the time employed by the old process.
We hope, before long, to be able to give our readers an illustration of the machinery employed at St. Hubert. in our last number wo refer to the peat machinery designed and manufactured by Messrs. ©laytun, Son, and Huwlett, and to its working at therr establishment is the Woudfiehldroad, Harrowroad. Since the machiuery was described in our columns several alterations have been made in its details, improvements having suggented th mselves to Messrs. Clayton in the course of its workmg. We nuw, therefore, illustrate on page 97, from Engineering, the latest a. rangement, the engraving having been prepared from a photogr ph of the appatatus taken as it stands in Messrs. Claytons' yard. 'To follow the course of manufacture with this apparatus we must bugin wihh the squeeziag trucks, which we hive n.t thought it necessary to illustrate. These are simply closed wagous rumnirg upou a light milway, and fitted with covers which are securtd when the wayons are filled. The sides and bottom of each wagon are perforated with small holes, and on : end of the budy of the wagon is movable and is act ated by a screw. As soon as the wagon is losued this movable end is force. inwards byameans of the screw. and thus the peat is put under pressure so as to rid it of some of its surplus water on its way to the machine. These wagons are used when the peat contains much surplus witer, but in cases were the pent is not very wet, the oidinary tipping tru:ks only are required. The: wagons are hauled from the bog to the works by a birrcl hoisting gear which is erected over the machine and from which it is driven.
From the trucks the peat is tipped into the vertic. 1 hope p of the machine, in which are inclined blades fixed upon the vertical shatt. The blades break up the lumps of, cat and press the mass downwards into the h sizontal cylinder into which it is fed by a worm placed on the central shaft. The peat is thus brought within reach of th propelling arms
which are fixd spirally around the ccntral shaft in the horiwhich are axed spirally around the central shaft in the hooi-
zontal cylinder, and which pass between sharp steel knives. The knives are made with dove-tailed fect and are received into corresponding grooves in a removable bar-plate, which is secured in the side of the horizontal cyl nder by bolts. By means of the scissor-like action of this internal machinery the peat is cut up into small pieces and sque zed or kneaded together. The fibres of peat are, by this treatment, so divided that facality is given for setting free all uoisture and fixed air that may be reta ned inthe cells of the stalks, and the peat is deprived of clasicity, or resiliency, so that it 18 reduced to a suitable condition for mo. Idag. The spaces between the cutting hnives are gradually r duced from the fieding to the delaviry end of cyhuder, the propelling arms being correspondiugly placen. The mouldug ornfices are adjuted at the of these oriaces have hith rto been used and have been found conveni, nt in working.

Benerth the chamber upon which the monlding orifice is fixed, and which is seen to the left of the machine, is a roller table on which the trays for receiving the moulh d peat are placed in succession by a boy, so that they rum in a continuous series underneath tho moulding orifices and receive the peat issuing from them. As the front end of each tray comes up, the workman severs the streams of moulded peat by means of a sliding cutter, and pushes the londed tray forward until it a opposite the cutting frıme, in which several wires are strotch. ed. These wires being brought down on the peat severs each barinto pieces 5 in . long, which is a convenient size for use. The loaded trays are sent alogg the roller table until they are opposito the tmy racks. The trays are then lifted off on to the rackp, where they remain for abont three days, until the peat will bear handling, when they are placed upon the open shelving for final drying. The tray racks consist of uprights sith arms fixed upon them, between which iron rods are strained. The contingency of accident to the machinery fron stones or hard foreign substances p issing in with the peat, is provided against by means of a friction clutch seen to the right of the machine in front of the driving gear. This cluthe can le screwed up to give any desired pres, ure, or resistance, and when any substance having an objectional d.gree of solidity passes into the machine, the clutch slips, its resistance be ag overcome, and breakage is thus avoided. The cylinder has a movable cover so that the interior may be readily examined, foreign substances removed, knives replaced, or anything else necessary done.

Various kinds of peat have been tried by this machine, and it is interesting to notice the difference between the peat dried without having been previously treated, by the machine, and that which ha; been operated upon. Peat of very fibrous nature when dry has an upen spongy aphearance, suggestive of cocoa-nut fibre. The same peat treated by this machincry bec mes compact and hard and assumes a specific gravity of from 1.05 to 1.10 , whilst black decomposed bog zon ienses to about 1.20 . A set of nachinery to work 100 tons of crude peat e.nploys in all ten men and five boys including diggers, engine drivers, men in drying sheds, \&c, so that the cost, allowing a fair amount for wear and tear, is pleced by Messrs. Clayton at 3s. Gd. to 7s. per ton.
The calorific. alue of peat, which has been much questioned, varies considerably, some kinds of peat being very rich in heat-producing pover, whilst others aro very poor. In Canada prepared peat is said to do 5.06 the work of coal. With regard to the intensity of peat, it appears from the practical use of this fact in Canada and in Europe, t'at a large grate surface and slow draight are neces ary for ito most a 1 vantagcous combustion, and under such conditions its full intensity is realised. The form in which it is used is another consideration, that is whether applied in the form of condensed peat or wercly dried turf. In the latter case the fuel is too light to withstand any considerable draught, whilst that in the concentrated form has been successfully used under strong blasts. Experiuments now being carried out by burning in a locumotive the peat receritly made by Messrs. Claytons' machine, give promise of its successful application in this direction The value of peat charcoal too, has long been recognised, and as the pent produced by this appamatus appears to be in good form and condition for charcoal making there are grounds for anticipating its use in this resprect. This point is also being practically tested, and there is no apparent reason why this, as well as the other applications, should not succeed, in which case this condensed peat, being economically produced, will become a general matufacture.

ATMOSPHERIC TELEGRAPH AT PARIS.

We illustrate on page 101 the despatching room of what is somewhat erroneously called the Parisian Atmospheric Telegraph Company. By telegraphing we understand the transmission over wires of messages by means of electrical signals. The system we are about to describe briefly is exactly similar to that which has been in successful operation for some tine in London for the distribution of mails to and from the di. ferent post offices. It consists in the propulsion throuph tubes of small carriages containing within them messages, etc These tubes are of small dimensious as may bo seen by the illustration and are laid down beside the gas and water pipes. The system is composed of sixtcen tubes each of which is

