SCHOOL WORK.

MATHEMATICS.

ARCHIBALD MACMURCHY, M.A., TORONTO, EDITOR.

PROBLEMS FOR JUNIOR MATRIC-ULATION, 1887.

Examiner-J. W. REID. B.A.

By R. A. GRAY, B.A., Math. Master, Coll. Inst., London.

(Continual from October No.)

9. Eliminate *l*, *m*, *n*, from the equations $(A)a^{2}l^{*}+b^{2}m^{*}+c^{2}n^{*}=a_{1}^{2}l+b_{1}^{2}m+c_{1}^{2}n$ al=bm=cn and $(B)l^{2}+m^{2}+n^{2}=1$.

9. Let al = bm = cn = k; $\therefore l = \frac{k}{a}$, etc. Substitute in (A)

 $\therefore k^{2} \left(\frac{\mathbf{I}}{a} + \frac{\mathbf{I}}{b} + \frac{\mathbf{I}}{c} \right) = \frac{a_{1}^{2}}{a} + \frac{b_{1}^{2}}{b} + \frac{c_{1}^{2}}{c}$ again from (B) $k^{2} \left(\frac{\mathbf{I}}{a^{2}} + \frac{\mathbf{I}}{b^{2}} + \frac{\mathbf{I}}{c^{2}} \right) = \mathbf{I}.$ $\therefore \frac{\mathbf{I}}{a} + \frac{\mathbf{I}}{b} + \frac{\mathbf{I}}{c} = \left(\frac{a_{1}^{2}}{a} + \frac{b_{1}^{2}}{b} + \frac{c_{1}^{2}}{c} \right)$ $\left(\frac{\mathbf{I}}{a^{2}} + \frac{\mathbf{I}}{b^{2}} + \frac{\mathbf{I}}{c^{2}} \right).$

10. The number of ways in which r things may be distributed among n+p persons, so that certain n of the persons may have one at least, is $(n+p)^r - (n+p-1)^r - n(n+p+1)^r$

$$+\frac{n(n-1)}{2}(n+p-2)^r + \text{etc.}$$

10. The number of ways in which n+ppeople (A, B, C, ...) may receive r things is $(n+p)^r$. Next suppose A always receives one, then all ways in which r things could be given to the remaining n+p-1 would be excluded, *i.e.*, $(n+p-1)^r$ ways. Similarly with B, C,... so that if some one of n persons must receive one, $n(n+p-1)^r$ would be excluded from the $(n+p)^r$ ways, *i.e.*, $(n+p)^r - n(n+p-1)^r$. Next, when some wo of the n get one each at least, we must

exclude from the $n(n+p-1)^r$, unaccountable cases those in which one person (B, for example) always receives one, *i.e.*, $(n+p-2)^r$ Now since we have $\frac{n(n-1)}{2}$ combinations of n persons two at z time, we must exclude $\frac{n(n-1)}{12}(n+p-2)^r$ ways from the $n(n + p - 1)^r$ exclusion when one person gets one, *i.e.*, $(n + p)^r - n(r + p - 1)^r$ $+\frac{n(n-1)}{2}(n+p-2)$, and so on until every one of the *n* persons receives one. 11. If $l \cos(\theta - \beta) - m \cos(\theta - a) = n$, show that $l \sin (\theta - \beta) - m \sin (\theta - a)$ $= \sqrt{l^2 + m^2 - n^2 - 2} lm \cos(a - \beta).$ 11. Let $\theta - \beta = \phi$, and $\theta - a = \psi$. By squaring we get $l^2 \cos^2 \phi + m^2 \cos^2 \psi - 2 lm \cos \phi$ $\cos \psi = n^2$; $l^2 + m^2 - n^2 - (l^2 \sin^2 \phi + m^2)$ $\sin^2 \psi - 2lm \sin \phi \sin \psi - 2lm (\cos \phi \cos \psi +$ $\sin \phi \sin \psi = 0$; $\therefore l^2 + m^2 - n^2 - 2 lm \cos \theta$ $(a-\beta)=l^2\sin^2\phi+\ldots$ $=(l\sin\phi-m\sin\psi)^2$. Q.E.D. 12. If $\sin \frac{-1x}{2} + \sin \frac{-1y}{2} = \sin \frac{-1c^2}{2k}$ then $b^{2}x^{2} + 2xy\sqrt{a^{2}b^{2} - c^{4}} + a^{2}y^{2} = c^{4}$ 12. Sin $\left(\sin \frac{-1x}{a} + \sin \frac{-1y}{b}\right)$ $=\frac{x\sqrt{b^{2}-y^{2}}}{a^{b}}+\frac{y\sqrt{a^{2}-x^{2}}}{a^{b}}=\frac{c^{2}}{a^{b}},$ square ... $x^2b^2 - 2x^2y^2 + a^2y^2$ $+2xy \sqrt{(b^2-y^2)(a^2-x^2)}=c^4(A);$

again cos
$$\left(\sin \frac{-1x}{a} + \sin \frac{-1y}{b}\right)$$

= $\frac{\sqrt{(b^2 - y^2)(a^2 - x^2)}}{ab} - \frac{xy}{ab} = \frac{\sqrt{a^2b^2 - c^4}}{ab}$,

substitute this in (A), we get $b^2 x^2 + a^2 y^2 + 2xy \sqrt{a^2 b^2 - c^4} = c^4$.

13. The area of any triangle is to the area of the triangle formed by joining the points