(4) Prove the formulæ
(a) Sin. $2 \mathrm{~A}=\frac{2 \tan . \mathrm{A}}{1+\tan \cdot{ }^{2} \mathrm{~A}}$
(b) Sin. ${ }^{2} \mathrm{~A}-\sin .^{2} \mathrm{~B}=\sin .(\mathrm{A}+\mathrm{B}) \sin \cdot(\mathrm{A}-\mathrm{B})$
(c) $\operatorname{Tan}^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A}$
(d) $\operatorname{Tan} \frac{1}{2}(\mathrm{~A}+\mathrm{B})=\frac{\sin . \mathrm{A}+\sin \cdot \mathrm{B}}{\cos . \mathrm{A}+\cos \cdot \mathrm{B}}$
(5) In a triangle, A B C, whose sides ar a. b. c., and perimeter 2 s , prove that

$$
\sin . \frac{1}{3} \mathbf{A}=\sqrt{\frac{(s-b)(s-c)}{b c}}
$$

(6) From a boat I observe that the elevation of the top of a tower on a cliff is $21^{\circ} 20^{\prime}$, and rowing directly towards the tower for 500 yards, I now observe the elevation of the top and bottom of the tower to be $49^{\circ} 3$, and $41^{\circ} 20^{\prime}$, respectively. What is the height of the cliff and of the tower?
(7) In a triangle $A B C$ given that $A B=50 \mathrm{ft} . \mathrm{B} C=20 \mathrm{ft}$. and angle $\mathrm{A} \mathrm{B} \mathrm{C=20} 15^{\prime}$, find the remaining side and angles.

