raise and maintain a higher pH through the conversion of HN_3 to NH_4^+ :

- 1. Ambient gaseous NH3(g) dissolves in the water, NH3(g) \rightarrow HN3(aq)
- 2. The dissolved $NH_{3(aq)}$ reacts with H^+ , which raises the pH $NH_{3(aq)} + H^+ \rightarrow NH_4^+$.

Therefore, the ambient pathways of auto-oxidation, Mn(II)and Fe(III)- catalyzed oxidation, and O₃ oxidation would have their rates enhanced by absorption of NH₃. However, the ambient pathways of H₂O₂ and HNO₂ would have their rates retarded by NH₃ absorption. The rate for soot would not be influenced.

NH3 can play other important roles. Reinders and Vles (1925) observed qualitatively that Cu(II) was complexed by NH3 and rendered non-catalytic. At high pH's (>9) such that NH3(aq) is the dominant form, NH3 is explained in terms of its influence on the pH of the water system; NH3 is not a catalyst. 2.3.5 Surface Chemical Reactions

Industrial emissions of solid particles (e.g., fly ash) and fugitive dust (e.g., windblown soil and minerals) provide a solid-surface that may chemisorb SO₂ and yield sulfate ions. The work reviewed in this section will include investigations of the SO₂ oxidation on the surfaces of: metal oxides, fly ash, charcoal, and soot. Although reaction kinetics have not been identified, two general types of processes have been: a capacity-limited reaction for SO₂ removal and a catalytic SO₂ NEAL